Современные биотехнологии для науки и практики. Примеры биотехнологических процессов. Получение витаминов. Этические аспекты некоторых достижений в биотехнологии

Дисциплина, изучающая способы использования организмов для решения технологических задач, - вот что такое биотехнология. А проще говоря, это наука, которая изучает живые организмы в поисках новых способов для обеспечения человеческих потребностей. Например, генная инженерия или клонирование - это новые дисциплины, которые используют с одинаковой активностью как организмы, так и новейшие компьютерные технологии.

Биотехнология: кратко

Очень часто понятие «биотехнология» путают с генной инженерией, возникшей в XX—XXI веках, а ведь биотехнология относится к более широкой специфике работы. Биотехнология специализируется на модификации растений и животных путем гибридизации и искусственного отбора для потребностей человека.

Эта дисциплина дала человечеству возможность улучшить качество пищевых продуктов, увеличить продолжительность жизни и продуктивность живых организмов - вот что такое биотехнология.

До 70-х годов прошлого века этот термин использовали исключительно в пищевой промышленности и сельском хозяйстве. И только в 1970 году ученые начали использовать термин «биотехнология» в лабораторных исследованиях, таких как выращивание живых организмов в пробирках или при создании рекомбинантных ДНК. Эта дисциплина базируется на таких науках, как генетика, биология, биохимия, эмбриология, а также на робототехнике, химических и информационных технологиях.

На основе новых научно-технологических подходов были разработаны методы биотехнологии, которые заключаются в двух основных позициях:

  • Крупномасштабном и глубинном культивировании биологических объектов в периодическом постоянном режиме.
  • Выращивании клеток и тканей в особых условиях.

Новые методы биотехнологии позволяют манипулировать генами, создавать новые организмы или менять свойства уже существующих живых клеток. Это дает возможность более обширно использовать потенциал организмов и облегчает хозяйственную деятельность человека.

История биотехнологии

Как бы это странно ни звучало, но свои истоки биотехнология берет с далекого прошлого, когда люди только начинали заниматься виноделием, хлебопечением и другими способами приготовления пищи. К примеру, биотехнологический процесс брожения, в котором активно участвовали микроорганизмы, был известен еще в древнем Вавилоне, где широко применялся.

Как науку, биотехнологию стали рассматривать только в начале XX века. Ее основоположником стал французский ученый, микробиолог Луи Пастер, а сам термин впервые ввел в обиход венгерский инженер Карл Эреки (1917 год). XX век был ознаменован бурным развитием молекулярной биологии и генетики, где активно применялись достижения химии и физики. Одним из ключевых этапов исследования стала разработка методов культивирования живых клеток. Изначально для промышленных целей начинали выращивать только грибы и бактерии, но спустя несколько десятилетий ученые могут создавать любые клетки, полностью управляя их развитием.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В это время предпринимаются первые попытки по налаживанию производства антибиотиков. Разрабатываются первые пищевые концентраты, контролируется уровень ферментов в продуктах животного и растительного происхождения. В 1940 году ученым удалось получить первый антибиотик - пенициллин. Это стало толчком к развитию промышленного производства лекарств, возникает целая отрасль фармацевтической промышленности, что представляет собой одну из ячеек современной биотехнологии.

Сегодня биотехнологии используются в пищевой промышленности, медицине, сельском хозяйстве и многих других сферах человеческой жизнедеятельности. Соответственно появилось множество новых научных направлений с приставкой «био».

Биоинженерия

На вопрос о том, что такое биотехнология, основная часть населения без сомнений ответит, что это не что иное, как генная инженерия. Отчасти это правда, но инженерия лишь часть обширной дисциплины биотехнологий.

Биоинженерия - это дисциплина, основная деятельность которой направлена на укрепление человеческого здоровья посредством объединения знаний из области инженерии, медицины, биологии и применения их на практике. Полное название этой дисциплины - биомедицинская инженерия. Главная ее специализация - решение медицинских проблем. Применение биотехнологий в медицине позволяет моделировать, разрабатывать и изучать новые субстанции, разрабатывать фармацевтические препараты и даже избавлять человека от врожденных заболеваний, что передаются по ДНК. Специалисты в этой области могут создавать приборы и оборудование для проведения новых процедур. Благодаря применению биотехнологий в медицине были разработаны искусственные суставы, кардиостимуляторы, протезы кожи, аппараты искусственного кровообращения. При помощи новых компьютерных технологий специалисты в области биоинженерии могут создавать белки с новыми свойствами при помощи компьютерного моделирования.

Биомедицина и фармакология

Развитие биотехнологий дало возможность по-новому посмотреть на медицину. Нарабатывая теоретическую базу о человеческом организме, специалисты в этой области имеют возможность использовать нанотехнологии для изменения биологических систем. Развитие биомедицины дало толчок для появления наномедицины, основная деятельность которой заключается в слежении, исправлении и конструировании живых систем на молекулярном уровне. К примеру, адресная доставка лекарств. Это не курьерская доставка от аптеки до дома, а передача препарата непосредственно к больной клетке организма.

Также развивается и биофармакология. Она изучает эффекты, которые оказывают вещества биологического или биотехнологического происхождения на организм. Исследования этой области знаний сосредоточены на изучении биофармацевтических препаратов и разработке способов для их создания. В биофармакологии лечебные средства получают из живых биологических систем или тканей организма.

Биоинформатика и бионика

Но биотехнологии - это не только учение о молекулах тканей и клеток живых организмов, это еще и применение компьютерных технологий. Таким образом, имеет место биоинформатика. Она включает в себя совокупность таких подходов, как:

  • Геномная биоинформатика. То есть методы компьютерного анализа, которые применяются в сравнительной геномике.
  • Структурная биоинформатика. Разработка компьютерных программ, которые предсказывают пространственную структуру белков.
  • Вычисление. Создание вычислительных методологий, которые могут управлять биологическими системами.

В этой дисциплине вместе с биологическими методами используются методы математики, статистических вычислений и информатики. Как в биологии используются приемы информатики и математики, так и в точных науках сегодня могут использовать учение об организации живых организмов. Как в бионике. Это прикладная наука, где в технических устройствах применяются принципы и структуры живой природы. Можно сказать, что это своеобразный симбиоз биологии и техники. Дисциплинарные подходы в бионике рассматривают с новой точки зрения как биологию, так и технику. Бионика рассматривала сходные и отличительные черты этих дисциплин. Эта дисциплина имеет три подвида - биологический, теоретический и технический. Биологическая бионика изучает процессы, которые происходят в биологических системах. Теоретическая бионика строит математические модели биосистем. А техническая бионика применяет наработки теоретической бионики для решения различных задач.

Как видно, достижения биотехнологий широко распространены в современной медицине и здравоохранении, но это лишь вершина айсберга. Как уже было сказано, биотехнология начала развиваться с того момента, как человек стал готовить себе пищу, а после широко применялась в сельском хозяйстве для выращивания новых селекционных культур и вывода новых пород домашних животных.

Клеточная инженерия

Одним из самых важных методов в биотехнологии является генная и клеточная инженерия, которые сосредоточены на создании новых клеток. С помощью этих инструментов человечество получило возможность создавать жизнеспособные клетки из совершенно разных элементов, принадлежащих различным видам. Таким образом, создается новый не существующий в природе набор генов. Генная инженерия дает возможность человеку получить желаемые качества от модифицированных клеток растений или животных.

Особенно ценятся достижения генной инженерии в сельском хозяйстве. Это позволяет выращивать растения (или животных) с улучшенными качествами, так называемые селекционные виды. Селекционная деятельность основана на отборе животных или растений с ярко выраженными благоприятными признаками. После эти организмы скрещивают и получают гибрид с требуемой комбинацией полезных признаков. Конечно, на словах все звучит просто, но получить искомый гибрид достаточно сложно. В реальности можно получить организм только с одним или несколькими полезными генами. То есть к исходному материалу добавляется лишь несколько дополнительных качеств, но даже это позволило сделать огромный шаг в развитии сельского хозяйства.

Селекция и биотехнологии дали возможность фермерам повысить урожайность, сделать плоды более крупными, вкусными, а главное, стойкими к морозам. Не обходит селекция стороной и животноводческую сферу деятельности. С каждым годом появляются новые породы домашних животных, которые могут давать больше поголовья и продуктов питания.

Достижения

В создании селекционных растений ученые выделяют три волны:

  1. Конец 80-х годов. Тогда ученые впервые начали выводить растения, устойчивые к вирусам. Для этого они брали один ген у видов, которые могли противостоять заболеваниям, «пересаживали» его в ДНК-структуру других растений и заставляли «работать».
  2. Начало 2000-х годов. В этот период начали создаваться растения с новыми потребительскими свойствами. Например, с повышенным содержанием масел, витаминов и т. д.
  3. Наши дни. В ближайшие 10 лет ученые планируют выпустить на рынок растения-вакцины, растения-лекарства и растения-биорекаткоры, которые будут производить компоненты для пластика, красителей и т. д.

Даже в животноводстве перспективы биотехнологии поражают. Уже давно создаются животные, которые имеют трансгенный ген, то есть обладают каким-либо функциональным гормоном, например гормон роста. Но это были лишь начальные эксперименты. В результате исследований были выведены трансгенные козы, которые могут вырабатывать белок, который останавливает кровотечение у больных, страдающих плохой свертываемостью крови.

В конце 90-х годов прошлого века американские ученые вплотную занялись клонированием клеток эмбрионов животных. Это позволило бы выращивать скот в пробирках, но сейчас этот метод все еще нуждается в доработке. Зато в ксенотрансплантации (пересадка органов одних видов животным другим) ученые в области прикладной биотехнологии достигли существенного прогресса. К примеру, в качестве доноров можно использовать свиней с геномом человека, тогда наблюдается минимальный риск отторжения.

Пищевая биотехнология

Как уже было упомянуто, первоначально методы биотехнологических исследований стали применять в пищевом производстве. Йогурты, закваски, пиво, вино, хлебобулочные изделия - это продукты, полученные при помощи пищевой биотехнологии. Этот сегмент исследования включает в себя процессы, направленные на изменение, улучшение или создание конкретных характеристик живых организмов, в частности бактерий. Специалисты этой области знаний занимаются разработкой новых методик по изготовлению различных продуктов питания. Ищут и улучшают механизмы и методы их приготовления.

Еда, которую человек ест каждый день, должна быть насыщена витаминами, минералами и аминокислотами. Однако по состоянию на сегодняшний день, согласно данным ООН, существует проблема обеспечения человека продуктами питания. Почти половина населения не имеет должного количества пищи, 500 миллионов голодают, четверть населения планеты питаются недостаточно качественными продуктами.

Сегодня на планете проживает 7,5 миллиарда человек, и если не принимать необходимых действий по повышению качества и количества продуктов питания, если этим не заниматься, то люди в развивающихся странах станут страдать от губительных последствий. И если можно заменить липиды, минералы, витамины, антиоксиданты продуктами пищевой биотехнологии, то заменить белок практически невозможно. Более 14 миллионов тонн белка каждый год не хватает, чтобы обеспечить потребности человечества. Но здесь на помощь приходят биотехнологии. Современное белковое производство строится на том, что искусственно формируются белковые волокна. Их пропитывают необходимыми веществами, придают форму, соответствующий цвет и запах. Этот подход дает возможность заменить практически любой белок. А вкус и вид ничем не отличаются от естественного продукта.

Клонирование

Важной областью знаний в современных биотехнологиях является клонирование. Вот уже на протяжении нескольких десятилетий ученые пытаются создать идентичных потомков, не прибегая к половому размножению. В процессе клонирования должен получиться организм, который похож на родительский не только внешне, но и генной информацией.

В природе процесс клонирования распространен среди некоторых живых организмов. Если у человека рождаются однояйцевые близнецы, то их можно считать естественными клонами.

Впервые клонирование провели в 1997 году, когда искусственно создали овцу Долли. И уже в конце ХХ века ученые стали говорить о возможности клонирования человека. Кроме того, исследовалось такое понятие, как частичное клонирование. То есть можно воссоздавать не целый организм, а его отдельные части или ткани. Если усовершенствовать этот метод, то можно получить «идеального донора». Кроме того, клонирование поможет сохранить редкие виды животных или восстановить исчезнувшие популяции.

Моральный аспект

Несмотря на то что основы биотехнологии могут оказать решающее влияние на развитие всего человечества, о таком научном подходе плохо отзывается общественность. Подавляющая часть современных религиозных деятелей (да и некоторые ученые) пытаются предостеречь биотехнологов от чрезмерного увлечения своими исследованиями. Особенно остро это касается вопросов генной инженерии, клонирования и искусственного размножения.

С одной стороны, биотехнологии представляются яркой звездой, мечтой и надеждой, которые станут реальными в новом мире. В будущем эта наука подарит человечеству множество новых возможностей. Станет возможным преодоление смертельных болезней, устранятся физические проблемы, и человек, рано или поздно, сможет достигнуть земного бессмертия. Хотя, с другой стороны, на генофонде может сказаться постоянное употребление генномодифицированных продуктов или появление людей, которых создали искусственно. Появится проблема изменения социальных структур, и, вполне вероятно, придется столкнуться с трагедией медицинского фашизма.

Вот что такое биотехнология. Наука, которая может подарить блестящие перспективы человечеству путем создания, изменения или улучшения клеток, живых организмов и систем. Она сможет подарить человеку новое тело, и мечта о вечной жизни станет реальностью. Но за это придется заплатить немалую цену.

Оглавление темы "Биотехнология. Генная инженерия. Генная терапия.":
1. Биотехнология. Наука биотехнология. Этапы развития биотехнологии.
2. Области применения биотехнологии. Области использования биотехнологии. Оптимизация микробиологических процессов в биотехнологии.
3. Промышленное применение микроорганизмов. Производство продуктов микробного синтеза. Производство антибиотиков. Производство вакцин.
4. Генная инженерия. Биобезопасность. Актуальность генной инженерии. Теоретическая база генной инженерии.
5. Организация генетического материала в клетке. Генотип. Что такое генная инженерия? Этапы получения генной продукции.
6. Применение методов генной инженерии. Показания (оправданность) применения генной инженерии. Причины применения генной инженерии.
7. Биобезопасность в генной инженерии. Документы регламентирующие биобезопасность.
8. Группы опасности микроорганизмов. Оценка риска применения генетически модифицированных микроорганизмов.
9. Генная диагностика. Генная терапия. Что такое генная диагностика и генная терапия? Виды генной терапии.
10. Векторы. Векторы на основе РНК-содержащих вирусов. Векторы на основе ДНК-геномных вирусов. Невирусные векторы.
11. Перспективы генной терапии. Будущее генной терапии. Задачи генной терапии.

Области применения биотехнологии. Области использования биотехнологии. Оптимизация микробиологических процессов в биотехнологии.

Новые методы получения промышленно важных продуктов - прежде всего методы биотехнологии , и в особенности, промышленной микробиологии. Промышленная микробиология основывается на применении микроорганизмов в промышленности для получения коммерчески, ценных продуктов и лекарств. Важнейшие продукты микробного синтеза - специальные вещества, используемые для фармацевтических и пищевых целей (антибиотики, ферменты, ингибиторы ферментов, витамины, ароматизаторы, добавки для пищевой промышленности и др.).; Гибкость метаболизма и высокая способность микробов к адаптации, простота культивирования, изученность генетики, разработанные методы направленного создания штаммов с заданными свойствами - преимущества, делающие микробную биотехнологию одним из перспективных направлений промышленности. Целесообразность промышленного производства определяется такими факторами, как высокий выход продукта (образование больших количеств из исходного материала), низкая стоимость производства и доступность сырья.

Области применения биотехнологии представлены в табл. 7-1. В настоящее время разработаны способы получения более 1000 наименований продуктов биотехнологическими способами. В США совокупная стоимость этих продуктов в 2000 г. оценивается в десятки миллиардов долларов. Все отрасли, в которых может быть использована биотехнология, перечислить практически невозможно.

Таблица 7-1. Области использования биотехнологии
Область применения Примеры
Медицина, здравоохранение, фармакология Антибиотики, ферменты, аминокислоты, кровезаменители, алкалоиды, нуклеотиды, иммунорегуляторы, противораковые и противовирусные препараты, новые вакцины, гормональные препараты (инсулин, гормон роста и др.), монокпональные AT для диагностики и лечения, пробы ДНК для диагностики и генотерапии, продукты диетического питания
Получение химических веществ Этилен, пропилен, бутилен, окисленные углеводороды, органические кислоты, терпены, фенолы, акрилаты, полимеры, ферменты, продукты тонкого органического синтеза, полисахариды
Животноводство Усовершенствование кормовых рационов (производство белка, аминокислот, витаминов, кормовых антибиотиков, ферментов, заквасок для силосования), ветеринарных препаратов (антибиотики, вакцины и т.д.), гормонов роста, создание высокопродуктивных пород, пересадка оплодотворённых клеток, эмбрионов, манипуляции с чужеродными генами
Растениеводство Биорациональные пестициды, бактериальные удобрения, гибберели-ны, производство безвирусного посадочного материала, создание высокопродуктивных гибридов, введение генов устойчивости к болезням, засухе, заморозкам, засоленности почв
Рыбное хозяйство Кормовой белок, ферменты, антибиотики, создание генетически модифицированных пород с усиленным ростом, устойчивых к заболеваниям
Пищевая промышленность Белок, аминокислоты, заменители сахара (аспартам, глюкозофруктовый сироп), полисахариды, органические кислоты, нуклеотиды, липиды, переработка пищевых продуктов
Энергетика и добыча полезных ископаемых Спирты, биогаз, жирные кислоты, алифатические углеводороды, водород, уран, интенсификация добычи нефти, газа, угля, искусственный фотосинтез, биометаллургия, добыча серы
Тяжёлая промышленность Улучшение технических характеристик каучука, бетонных, цементных, гипсовых растворов, моторных топлив; антикоррозийные присадки, смазки для проката чёрных и цветных металлов, технический белок и липиды
Лёгкая промышленность Улучшение технологии переработки кож, производства текстильного сырья, шерсти, бумаги, парфюмерно-косметических изделий, получение биополимеров, искусственных кожи и шерсти и т.д.
Биоэлектроника Биосенсоры, биочипы
Космонавтика Создание замкнутых систем жизнеобеспечения в космосе
Экология Утилизация сельскохозяйственных, промышленных и бытовых отходов, биодеградация трудноразлагаемых и токсических веществ (пестицидов, гербицидов, нефти), создание замкнутых технологических циклов, производство безвредных пестицидов, легкоразрушаемых полимеров
Научные исследования Генно-инженерные и молекулярно-биологические исследования (ферменты рестрикции ДНК, ДНК- и РНК-полимеразы, ДНК- и РНК-лигазы, нуклеиновые кислоты, нуклеотиды и т.д.), медицинские исследования (средства диагностики, реактивы и пр.), химия (реактивы, сенсоры)

Оптимизация микробиологических процессов в биотехнологии . Принципиальные подходы к оптимизации микробных биотехнологических процессов: управляемое культивирование (изменение состава питательной среды, целевые добавки, регуляция скорости перемешивания, аэрации, модификация температурного режима и пр.); генетические манипуляции, которые подразделяют на традиционные методы (селекция штаммов) и методы генной инженерии (технология рекомбинантных ДНК).

В настоящее время микробиологическим путём получают микробную биомассу , первичные и вторичные продукты метаболизма. Первичные продукты (продукты первой фазы) - метаболиты, синтез которых необходим для выживания данного микроорганизма. Синтез вторичных продуктов (продукты второй фазы) не относится к жизненно необходимым для микроорганизма-продуцента. Оптимальные условия для получения биомассы определяются высокими скоростями протока среды через культуры микроорганизмов и стабильными химическими условиями культивирования (в том числе рН, количество кислорода и углерода). Процесс получения продуктов первой фазы (в частности, ферментов) оптимизируют в целях увеличения удельной активности фермента (единиц/г*ч -1) и объёмной продуктивности (единиц /л*ч -1).

Для получения продуктов второй фазы (например, антибиотиков) главная задача - максимальное увеличение их концентрации, что ведёт к снижению затрат на их выделение.

Слово БИОТЕХНОЛОГ происходит от сочетания греческих слов «bios» — жизнь, «techne» — мастерство, искусство и «logos» — учение. Это в полной мере отражает деятельность биотехнолога. Профессия подходит тем, кого интересует физика, математика, химия и биология (см. выбор профессии по интересу к школьным предметам).

Специалисты по биотехнологии искусно используют живые биологические организмы, их системы и процессы, применяя научные методы генной инженерии, с целью создания новых сортов продуктов, растений, витаминов, лекарственных средств, а также улучшения свойств существующих видов в растительной и животной среде, устойчивых к неблагоприятным климатическим условиям, вредителям и болезням. В медицине биотехнологи играют неоценимую роль в создании новых лекарственных препаратов для ранней диагностики и успешного лечения самых сложных болезней.

Как любая наука биотехнология постоянно развивается, достигая небывалых высот. Так, в последние десятилетия она закономерно вышла на уровень клонирования и достигла определенных успехов в этой сфере. Клонирование жизненно важных человеческих органов (печень, почки) даёт шанс на лечение, полное выздоровление и повышение качества жизни людей во всём мире.

Биотехнология как наука находится на стыке клеточной и молекулярной биологии, молекулярной генетики, биохимии и биоорганической химии.

Отличительной особенностью развития биотехнологии в 21 веке в дополнение к её бурному росту в качестве прикладной науки является то, что она проникает во все сферы жизни человека, способствуя эффективному развитию всех отраслей экономики. В конечном итоге всё это содействует экономическому и социальному росту страны. Рациональное планирование и управление достижениями биотехнологии может решить такие важные для России проблемы, как освоение пустующих территорий и занятости населения. Это станет возможным, если применять достижения науки как инструмент индустриализации для создания маленьких производств в сельских районах.

Общий прогресс человечества во многом обязан развитию биотехнологии. Но с другой стороны, справедливо считается, что если допустить неконтролируемое распространение генно-модифицированных продуктов - это может способствовать нарушению биологического баланса в природе и в конечном итоге создать угрозу здоровью человека.

Особенности профессии

Функциональные обязанности биотехнолога зависят от того, в какой отрасли промышленности он работает.

Работа в фармацевтической отрасли предполагает:

  • участие в разработке состава и технологии производства лекарств или пищевых добавок;
  • участие во внедрении нового технологического оборудования;
  • испытание новых технологий на производстве;
  • работа по совершенствованию разработанных технологий;
  • участие в выборе оборудования, материалов и сырья для новой технологии;
  • контроль за правильностью выполнения вспомогательных технологических операций;
  • участие в разработке технико-экономических показателей (ТЭП) по лекарственным средствам;
  • пересмотр их по причине замены отдельных составляющих или изменения технологии;
  • своевременное ведение необходимой документации и отчетности.

Работа в научно-исследовательской сфере заключается в исследованиях, методических разработках и открытиях в области генной и клеточной инженерии.

Работа биотехнолога в такой важной сфере как охрана окружающей среды предполагает такие обязанности:

  • биологическая очистка сточных вод и загрязнённых территорий;
  • утилизация бытовых и промышленных отходов.

Работа в образовательных учреждениях предполагает преподавание биологических и сопутствующих дисциплин.

В любой области работа биотехнолога является творческой, научно-исследовательской и, безусловно, интересной и необходимой обществу.

Плюсы и минусы профессии

Плюсы

Специалисты по биотехнологии чрезвычайно востребованы в настоящее время, а в дальнейшем будут востребованы ещё больше, так как биотехнология — профессия будущего и ей предстоит бурное развитие. В перспективе профессия биотехнолога будет востребована и в других отраслях человеческой деятельности, которые даже ещё не существуют или только находятся в стадии становления.

К плюсам можно отнести престиж профессии и её многозначность, то есть возможность трудоустройства на смежные профессии в самые различные организации (см. места работы) на позиции генетического биоинженера, инженера биопроцессов, биотехнолога липидов, биотехнолога белка, биотехнолога фармацевтики, биоинженера клетки и ткани.

Биотехнологи тесно сотрудничают с зарубежными научно-исследовательскими институтами. Российские ученые пользуются высоким спросом, поэтому можно сделать хорошую карьеру за рубежом.

Минусы

Не всегда оправданное отрицательное отношение общественности и части научного мира к продуктам генной инженерии.

Место работы

  • фармацевтические компании;
  • парфюмерные производства;
  • фирмы и компании по производству продуктов питания;
  • предприятия аграрно-промышленного комплекса;
  • научно-исследовательские институты и лаборатории;
  • биотехнологические предприятия;
  • компании в сфере космонавтики и робототехники.

Важные качества

  • аналитический ум;
  • широкая эрудиция;
  • любознательность;
  • нестандартное мышление;
  • наблюдательность;
  • терпение;
  • ответственность;
  • чувство долга;
  • целеустремленность.

Обучение на Биотехнолога

На этом курсе можно получить профессию микробиолога за 3 месяца и 15 000 руб.:
— Одна из самых доступных цен в России;
— Диплом о профессиональной переподготовке установленного образца;
— Обучение в полностью дистанционном формате;
— Крупнейшее образовательное учреждение дополнительного проф. образования в России.

Оплата труда

Зарплата на 11.12.2019

Россия 25000—50000 ₽

Москва 35000—65000 ₽

Ступеньки карьеры и перспективы

Биотехнологи могут работать на позициях биохимика, биолога, вирусолога, микробиолога. Начинающие специалисты, как правило, устраиваются лаборантами химического анализа в фармацевтических компаниях или на предприятиях пищевой промышленности. На заводах по производству лекарств и пищевых добавок можно работать контролером производства. Карьеру можно сделать по вертикали, повышая профессиональный уровень и, соответственно, разрядность должности, вплоть до руководителя производства. Работая в НИИ, при стремлении к научным открытиям, можно сделать карьеру в научном мире.

Знаменитые биотехнологи

Ю.А.Овчинников - один из самых известных ученых в биотехнологии, ведущий ученый в сфере мембранной биологии. Автор множества научных работ (более 500), в том числе «Биоорганическая химия», «Мембрано-активные комплексоны». Его именем названо Общества биотехнологов России им. Ю.А.Овчинникова.

Новости трансгенной инженерии. Учёные скрестили попугая и сахарный тростник. Теперь сахар сам говорит, сколько его класть в чай.

История возникновения биотехнологии как науки:

В самые давние времена люди, сами того не осознавая, применяли биотехнологии в выпечке хлеба, в производстве вина и кисломолочных продуктов.

Научную основу под все подобные процессы подвел Л.Пастер в XIX веке, доказав, что процесс брожения обусловлен микроорганизмами. Но в современном виде биотехнология как наука возникла не сразу, а пройдя несколько этапов:

  1. В 40-50-е годы ХХ века в результате биосинтеза пенициллина была создана микробиологическая промышленность.
  2. В 60-70-е годы произошло развитие клеточной инженерии.
  3. В 1972 году создание первой гибридной молекулы ДНК «in vitro» в США повлекло за собой возникновение генетической инженерии. После этого стало возможным преднамеренное изменение генетической структуры живых организмов. В 70-е годы возник и сам термин «биотехнология».

Поэтапность появления биотехнологии обусловило её неразрывную связь с клеточной и молекулярной биологией, биохимией, молекулярной генетикой и биоорганической химией.

Биотехнологии – медицине будущего

Новый выпуск журнала «НАУКА из первых рук» вышел «по следам» всероссийской конференции с международным участием «Биотехнология – медицине будущего», состоявшейся в новосибирском Академгородке в июле 2017 г. Среди организаторов научного форума – Институт химической биологии и фундаментальной медицины и Институт цитологии и генетики СО РАН, а также Новосибирский национальный исследовательский государственный университет, где биомедицинские исследования ведутся в рамках стратегической академической единицы «Синтетическая биология», объединяющей ряд российских и зарубежных участников, в первую очередь институты СО РАН биологического профиля. В первой, вводной статье выпуска ее авторы дают обзор самых актуальных направлений и перспективных результатов исследований, связанных с разработкой и внедрением в практическую медицину новых генно-инженерных, клеточных, тканевых, иммунобиологических и цифровых технологий, часть из которых детально представлена в других статьях номера

Стремительное развитие биологической науки, обусловленное появлением высокопроизводительных приборов и созданием методов манипулирования информационными биополимерами и клетками, подготовило фундамент для развития медицины будущего. В результате исследований последних лет были разработаны эффективные диагностические методы, появились возможности для рационального конструирования противовирусных, противобактериальных и противоопухолевых препаратов, средств генотерапии и геномного редактирования. Современные биомедицинские технологии все в большей степени начинают влиять на экономику и определять качество жизни людей.

К настоящему времени детально исследованы строение и функции основных биологических молекул и разработаны методы синтеза белков и нуклеиновых кислот. Эти биополимеры по своей природе являются «интеллектуальными» материалами, так как способны высокоспецифично «узнавать» и воздействовать на определенные биологические мишени. Путем направленного «программирования» таких макромолекул можно создавать рецепторные молекулярные конструкции для аналитических систем, а также лекарственные препараты, избирательно воздействующие на конкретные генетические программы или белки.

«Интеллектуальные препараты», созданные методами синтетической биологии, открывают возможности для таргетной (целенаправленной) терапии аутоиммунных, онкологических, наследственных и инфекционных заболеваний. Это дает основание говорить о внедрении в медицинскую практику подходов персонализированной медицины, ориентированной на лечение конкретного человека.

С помощью современных медицинских технологий и фармпрепаратов сегодня удается излечивать многие болезни, представлявшие в прошлом огромную медицинскую проблему. Но с развитием практической медицины и ростом продолжительности жизни все более актуальной становится задача здравоохранения в самом прямом смысле этого слова: не просто бороться с болезнями, но поддерживать имеющееся здоровье, чтобы человек мог вести активный образ жизни и оставаться полноценным членом общества до глубокой старости.

БУДЕМ ЗДОРОВЫ! Современные методы геномного секвенирования широко внедряются в медицину, и в ближайшем будущем все пациенты будут иметь генетические паспорта. Сведения о наследственных особенностях пациента – ​основа прогностической персонализированной медицины. Предупрежденный, как известно, вооружен. Человек, осведомленный о возможных рисках, может организовать свою жизнь таким образом, чтобы не допустить развития заболевания. Это касается и образа жизни, и выбора продуктов питания и терапевтических препаратов.
При условии постоянного отслеживания набора маркеров, сигнализирующих об отклонениях в работе организма, можно вовремя провести их коррекцию. Уже сейчас существует множество методов мониторинга состояния организма: например, с помощью датчиков, следящих за работой сердечно-сосудистой системы и качеством сна или устройств, анализирующих газообразные продукты в выдыхаемом человеком воздухе. Огромные возможности открываются в связи с развитием малоинвазивных технологий жидкостной биопсии и технологий анализа белков и пептидов, циркулирующих в кровотоке. На ранних стадиях болезни корректировать состояние организма во многих случаях можно «мягкими» методами: меняя характер питания, используя добавочные микроэлементы, витамины и пробиотики. В последнее время особое внимание уделяется возможностям корректировки отклонений в составе кишечной микрофлоры человека, которые ассоциированы с развитием большого числа патологических состояний.

Такую задачу можно решить, обеспечив постоянный эффективный контроль за состоянием организма, который позволил бы избегать действия неблагоприятных факторов и предупреждать развитие заболевания, выявляя патологический процесс на самом раннем этапе, и ликвидировать саму причину возникновения болезни.

В этом смысле основную задачу медицины будущего можно сформулировать как «управление здоровьем». Сделать это вполне реально, если иметь полную информацию о наследственности человека и обеспечить мониторинг ключевых показателей состояния организма.

«Умная» диагностика

Для управления здоровьем необходимо иметь эффективные и простые малоинвазивные методы ранней диагностики заболеваний и определения индивидуальной чувствительности к терапевтическим препаратам, а также факторам внешней среды. Например, должны быть решены (и уже решаются) такие задачи, как создание систем для генной диагностики и выявления возбудителей инфекционных заболеваний человека, разработка методов количественного определения белков и нуклеиновых кислот – ​маркеров заболеваний.

Отдельно стоит выделить создание методов ранней неинвазивной диагностики (жидкостная биопсия ) опухолевых заболеваний, основанных на анализе внеклеточной ДНК и РНК. Источником таких нуклеиновых кислот служат как погибшие, так и живые клетки. В норме их концентрация относительно низка, но обычно возрастает при стрессе и развитии патологических процессов. При возникновении злокачественной опухоли в кровоток попадают нуклеиновые кислоты, выделяемые раковыми клетками, и такие характерные циркулирующие РНК и ДНК могут служить маркерами заболевания.

Сейчас на основе подобных маркеров разрабатываются подходы к ранней диагностике рака, методы прогнозирования риска его развития, а также оценки степени тяжести течения болезни и эффективности терапии. Например, в Институте химической биологии и фундаментальной медицины СО РАН было показано, что при раке предстательной железы повышается степень метилирования определенных участков ДНК. Был разработан метод, позволяющий выделить из образцов крови циркулирующую ДНК и проанализировать характер ее метилирования. Этот способ может стать основой точной неинвазивной диагностики рака простаты, которой на сегодня не существует.

Важным источником информации о состоянии здоровья могут служить так называемые некодирующие РНК , т. е. те РНК, которые не являются матрицей для синтеза белков. За последние годы было установлено, что в клетках образуется множество различных некодирующих РНК, участвующих в регуляции самых разных процессов на уровне клеток и целого организма. Изучение спектра микроРНК и длинных некодирующих РНК при различных состояниях открывает широкие возможности для быстрой и эффективной диагностики. В Институте молекулярной и клеточной биологии СО РАН (ИМКБ СО РАН, Новосибирск) и ИХБФМ СО РАН идентифицирован ряд микроРНК – ​перспективных маркеров опухолевых заболеваний.

УЗНАТЬ ВРАГА В ЛИЦО Современные технологии с применением биологических микрочипов позволяют быстро и эффективно идентифицировать возбудителей ряда болезней (туберкулеза, СПИДа, гепатитов В и С, сибирской язвы, инфекций новорожденных), фиксировать наличие определенных биотоксинов, определять хромосомные транслокации при лейкозах, регистрировать белковые маркеры онкозаболеваний, определять генетическую предрасположенность к болезням и индивидуальную чувствительность к некоторым типам терапии. Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК.
ИХБФМ СО РАН участвовал в реализации двух крупных международных проектов по разработке олигонуклеотидных микрочипов, финансировавшихся американской Программой сотрудничества в области биотехнологий Департамента здравоохранения США (Biotechnology Engagement Program, US Department of Health and Human Services , BTEP/DHHS). В рамках первого проекта с участием специалистов ИМБ им. В. А. Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов (на стеклянной подложке и с гелевыми спотами), а также портативный флуоресцентный детектор для их анализа. В рамках второго проекта был создан универсальный микрочип для типирования вируса гриппа А, позволяющий достоверно различать 30 подтипов этого вируса на основе определения двух поверхностных белков вируса – ​гемагглютинина и нейраминидазы

С помощью современных технологий секвенирования РНК и ДНК может быть создана платформа для диагностики и прогноза онкологических заболеваний человека на основе анализа содержания микроРНК и генотипирования, т. е. установления конкретных генетических вариантов того или иного гена, а также для определения профилей экспрессии (активности) генов. Такой подход предполагает возможность быстрого и одновременного проведения множества анализов с помощью современных устройств – ​биологических микрочипов .

Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул. Идея создания подобных устройств родилась в Институте молекулярной биологии им. В. А. Энгельгардта Российской академии наук (Москва) еще в конце 1980-х гг. За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий.

Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое.

Мировой лидер «биочипостроения» – ​американская компания Affymetrix Inc . – ​производит биочипы с высокой плотностью молекулярных зондов, основываясь на фотолитографических технологиях, использующихся для получения полупроводниковых микросхем. На одном таком чипе на площади менее 2 см 2 могут располагаться миллионы точек-спотов размером в несколько микрон. Каждая подобная точка содержит несколько миллионов одинаковых олигонуклеотидов, ковалентно связанных с поверхностью микрочипа

Развитие биоаналитических диагностических методов требует постоянного повышения чувствительности  – ​способности давать достоверный сигнал при регистрации малых количеств детектируемого вещества. Биосенсоры  – ​это новое поколение устройств, позволяющих специфично анализировать содержание различных маркеров заболеваний в образцах сложного состава, что особенно важно при диагностике заболеваний.

ИХБФМ СО РАН в сотрудничестве с новосибирским Институтом физики полупроводников СО РАН разрабатывает микробиосенсоры на основе полевых транзисторов , являющихся одними из самых чувствительных аналитических устройств. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул. Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда. Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента.

«Комплементарное» лекарство

Расшифровка геномов человека и возбудителей различных инфекций открыла дорогу для разработки радикальных подходов к терапии болезней путем направленного воздействия на их первопричину – ​генетические программы, ответственные за развитие патологических процессов. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию.

Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. Это свойство называется «комплементарностью»

Такое воздействие может быть осуществлено с помощью фрагментов нуклеиновых кислот – ​синтетических олигонуклеотидов , способных избирательно взаимодействовать с определенными нуклеотидными последовательностями в составе генов-мишеней по принципу комплементарности . Сама идея использовать олигонуклеотиды для направленного воздействия на гены была впервые выдвинута в лаборатории природных полимеров (впоследствии – ​отдел биохимии) Новосибирского института биоорганической химии СО РАН (ныне – ​Институт химической биологии и фундаментальной медицины СО РАН). В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК.

Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов (антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования). Исследования последних лет показали, что на основе антисмысловых олигонуклеотидов можно получить широкий спектр биологически активных веществ, действующих на различные генетические структуры и запускающих процессы, приводящие к временному «выключению» генов либо изменению генетических программ – ​появлению мутаций . Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции.

«ЛЕЧИМ» БЕЛОК Регуляция экспрессии генов под действием «антисмысловых» олигонуклеотидов возможна на различных уровнях. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т. е. синтеза белка. Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. При одном из таких нарушений в клетках синтезируется «неправильный» дистрофин – ​белок, являющийся важным структурным компонентом мышечной ткани. Это приводит к возникновению тяжелого заболевания – ​миодистрофии Дюшенна. В ИХБФМ СО РАН разработаны терапевтические олигонуклеотиды для лечения этого заболевания, и уже подана заявка на соответствующий патент.

Сегодня антисмысловые олигонуклеотиды и РНК, подавляющие функции мРНК и вирусных РНК, применяются не только в биологических исследованиях. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику.

Лаборатория биомедицинской химии ИХБФМ СО РАН, работающая в этом направлении, была создана в 2013 г. благодаря научному мегагранту Правительства РФ. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С. Альтман. В лаборатории ведутся исследования физико-химических и биологических свойств новых перспективных искусственных олигонуклеотидов, на основе которых разрабатываются РНК-направленные противобактериальные и противовирусные препараты.

В рамках проекта, руководимого С. Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа. Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность.

В ИХБФМ СО РАН впервые в мире были синтезированы фосфорилгуанидиновые производные олигонуклеотидов. Эти новые соединения электронейтральны, устойчивы в биологических средах и прочно связываются с РНК- и ДНК-мишенями в широком диапазоне условий. Благодаря спектру уникальных свойств они перспективны для применения в качестве терапевтических агентов, а также могут быть использованы для повышения эффективности средств диагностики, основанных на биочиповых технологиях.

Среди коммерческих фирм лидером в создании терапевтических нуклеиновых кислот является американская компания Ionis Pharmaceuticals, Inc . (США). После многолетних клинических исследований были введены в медицинскую практику антисмысловые препараты: Kynamro  – ​снижающий уровень «плохого» холестерина, Alicaforsen  – ​для лечения язвенного колита и Spinraza  – ​для терапии дистрофии Дюшенна. Препараты Ionis против ряда других заболеваний проходят клинические испытания. Лидер в создании терапевтических интерферирующих РНК – ​компания Alnylam Pharmaceuticals  – ​также проводит клинические испытания целой серии препаратов для лечения тяжелых заболеваний (таких как наследственный амилоидоз, тяжелые формы гиперхолестеролемии, гемофилия), эффективные методы терапии которых в настоящее время отсутствуют

«Антисмысловое» воздействие на матричные РНК не ограничивается простым блокированием сплайсинга (процесса «созревания» РНК) или синтеза белка. Более эффективным является ферментативное разрезание мРНК, спровоцированное связыванием терапевтического олигонуклеотида с мишенью. При этом олигонуклеотид – ​индуктор расщепления – ​может в дальнейшем связаться с другой молекулой РНК и повторить свое действие. В ИХБФМ СО РАН исследовали действие олигонуклеотидов, образующих при связывании с мРНК комплексы, которые могут служить субстратами фермента РНКазы Р. Этот фермент и сам представляет собой РНК с каталитическими свойствами (рибозим ).

Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции . Суть этого явления в том, что, попадая в клетку, длинные дцРНК разрезаются на короткие фрагменты (так называемые малые интерферирующие РНК , siPНК), комплементарные определенному участку матричной РНК. Связываясь с такой мРНК, siPНК запускают действие ферментативного механизма, разрушающего молекулу-мишень.

Использование этого механизма открывает новые возможности для создания широкого спектра высокоэффективных нетоксичных препаратов для подавления экспрессии практически любых, в том числе вирусных, генов. В ИХБФМ СО РАН на основе малых интерферирующих РНК сконструированы перспективные противоопухолевые препараты, показавшие хорошие результаты в экспериментах на животных. Одна из интересных находок – ​двуцепочечные РНК оригинального строения, стимулирующие в организме производство интерферона , эффективно подавляющие процесс метастазирования опухолей. Хорошее проникновение препарата в клетки обеспечивают носители – ​новые катионные липосомы (липидные пузырьки), разработанные совместно со специалистами Московского государственного университета тонких химических технологий имени М. В. Ломоносова.

Новые роли нуклеиновых кислот

Разработка метода полимеразной цепной реакции, позволяющего в неограниченных количествах размножать нуклеиновые кислоты – ​ДНК и РНК, и появление технологий молекулярной селекции нуклеиновых кислот сделали возможным создание искусственных РНК и ДНК с заданными свойствами. Молекулы нуклеиновых кислот, избирательно связывающие определенные вещества, называются аптамерами . На их основе могут быть получены препараты, блокирующие функции любых белков: ферментов, рецепторов или регуляторов активности генов. В настоящее время получены уже тысячи самых разных аптамеров, находящих широкое применение в медицине и технике.

Один из мировых лидеров в этой области – ​американская компания Soma Logic Inc . – ​создает так называемые сомамеры , которые селективно отбирают из библиотек химически модифицированных нуклеиновых кислот по уровню сродства к тем или иным мишеням. Модификации по азотистому основанию придают таким аптамерам дополнительную «белковоподобную» функциональность, что обеспечивает высокую стабильность их комплексам с мишенями. Кроме того, это увеличивает вероятность успешного отбора сомамеров к тем соединениям, к которым подобрать обычные аптамеры не удалось.

Развитие синтетической биологии происходит на базе революционного прорыва в области олигонуклеотидного синтеза. Синтез искусственных генов стал возможным благодаря созданию высокопроизводительных синтезаторов генов, в которых использованы микро- и нанофлюидные системы. Сегодня созданы приборы, позволяющие быстро «собирать» искусственные гены и/или бактериальные и вирусные геномы, аналоги которых в природе отсутствуют.
Примером развития микрочиповых технологий могут служить американская фирма LC Sciences и немецкая Febit Gmbh . Биочиповый реактор производства LC Sciences с использованием стандартных реагентов для олигонуклеотидного синтеза позволяет одновременно синтезировать 4-8 тыс. разных олигонуклеотидов. Микрочиповый реактор фирмы Febit Gmbh состоит из 8 независимых фрагментов, на каждом из которых одновременно синтезируется до 15 тыс. разных олигонуклеотидов. За сутки таким образом можно получить до полумиллиона олигонуклеотидов – ​строительных блоков будущих генов

Среди аптамеров, имеющих сродство к клинически значимым мишеням, к настоящему времени имеются кандидаты на терапевтические препараты, достигшие третьей, ключевой фазы клинических испытаний. Один из них – ​Macugen  – ​уже используется в клинической практике для терапии заболеваний сетчатки глаза; препарат для лечения возрастной макулярной дегенерации сетчатки Fovista успешно заканчивает испытания. И на очереди множество подобных препаратов.

Но терапия – ​это не единственное предназначение аптамеров: они вызывают огромный интерес у биоаналитиков в качестве распознающих молекул при создании аптамерных биосенсоров .

В ИХБФМ совместно с Институтом биофизики СО РАН (Красноярск) разрабатываются биолюминесцентные аптасенсоры с переключаемой структурой. Получены аптамеры, которые играют роль репортерного блока сенсора, к Са 2+ -активируемому фотопротеину обелину , представляющему собой удобную биолюминесцентную метку. Этот сенсор способен «улавливать» молекулы лишь определенных белков, которые необходимо детектировать в образце. В настоящее время по этой схеме конструируются переключаемые биосенсоры к модифицированным белкам крови, служащим маркерами диабета.

Новым объектом среди терапевтических нуклеиновых кислот является и сама матричная (информационная) РНК. Компания Moderna Therapeutics (США) сейчас проводит масштабные клинические исследования мРНК. При попадании в клетку мРНК действуют в ней как ее собственные. В результате клетка получает возможность производить белки, которые могут предотвратить или остановить развитие заболевания. Большая часть таких потенциальных терапевтических препаратов направлена против инфекционных (вирус гриппа, вирус Зика, цитомегаловирус и др.) и онкологических заболеваний.

Белки как лекарство

Огромные успехи синтетической биологии за последние годы отразились и в разработке технологий производства терапевтических белков, уже широко применяющихся в клинике. В первую очередь это относится к противоопухолевым антителам, с помощью которых стала возможной эффективная терапия целого ряда онкологических заболеваний.

Сейчас появляются все новые противоопухолевые белковые препараты. Примером может служить препарат лактаптин , созданный в ИХБФМ СО РАН на основе фрагмента одного из основных белков молока человека. Исследователи обнаружили, что этот пептид индуцирует апоптоз («самоубийство») клеток стандартной опухолевой клеточной культуры – ​аденокарциномы молочной железы человека. С использованием методов генной инженерии был получен ряд структурных аналогов лактаптина, из которых был выбран наиболее эффективный.

Испытания на лабораторных животных подтвердили безопасность препарата и его противоопухолевую и антиметастатическую активность в отношении ряда опухолей человека. Уже разработана технология получения лактаптина в субстанции и лекарственной форме, изготовлены первые экспериментальные партии препарата.

Терапевтические антитела все шире применяются и для лечения вирусных инфекций. Специалистам ИХБФМ СО РАН удалось генно-инженерными методами создать гуманизированное антитело против вируса клещевого энцефалита. Препарат прошел все доклинические испытания, доказав свою высокую эффективность. Оказалось, что защитные свойства искусственного антитела в сто раз выше, чем коммерческого препарата антител, получаемого из сыворотки доноров.

Вторжение в наследственность

Открытия последних лет расширили возможности генотерапии, которые до недавнего времени представлялась фантастикой. Технологии геномного редактирования , основанные на применении РНК-белковой системы CRISPR/Cas, способны распознавать определенные последовательности ДНК и вносить в них разрывы. При «ремонте» (репарации ) таких нарушений можно исправлять мутации, ответственные за заболевания, или вводить в терапевтических целях новые генетические элементы.

Редактирование генов открывает перспективы радикального решения проблемы генетических заболеваний путем модификации генома при использовании экстракорпорального оплодотворения . Принципиальная возможность направленного изменения генов эмбриона человека уже доказана экспериментально, и создание технологии, обеспечивающей появление на свет детей, свободных от наследственных заболеваний, задача ближайшего будущего.

С помощью геномного редактирования можно не только «исправлять» гены: этот подход можно использовать для борьбы с вирусными инфекциями, не поддающимися обычной терапии. Речь идет о вирусах, встраивающих свой геном в клеточные структуры организма, где он оказывается недоступным для современных противовирусных препаратов. К таким вирусам относятся ВИЧ‑1, вирусы гепатита В, папилломавирусы, полиомавирусы и ряд других. Системы геномного редактирования могут инактивировать вирусную ДНК внутри клетки, разрезав ее на безопасные фрагменты либо внеся в нее инактивирующие мутации.

Очевидно, что применение системы CRISPR/Cas в качестве средства коррекции мутаций человека станет возможным лишь после ее усовершенствования с целью обеспечения высокого уровня специфичности и проведения широкого спектра испытаний. Кроме того, для успешной борьбы с опасными вирусными инфекциями необходимо решить проблему эффективной доставки терапевтических агентов в целевые клетки.

Сначала была клетка – ​стволовая

Одним из наиболее быстро развивающихся направлений в медицине является клеточная терапия . В ведущих странах уже проходят клинические испытания клеточных технологий, разработанных для лечения аутоиммунных, аллергических, онкологических и хронических вирусных заболеваний.

В России пионерные работы по созданию средств терапии на основе стволовых клеток и клеточных вакцин были выполнены в Институте фундаментальной и клинической иммунологии СО РАН (Новосибирск). В результате исследований были разработаны методы лечения онкологических заболеваний, гепатита В и аутоиммунных заболеваний, которые уже начали применяться в клинике в экспериментальном режиме.

Чрезвычайно актуальными в наши дни стали проекты создания банков культур клеток пациентов с наследственными и онкологическими заболеваниями для тестирования фармакологических препаратов. В Новосибирском научном центре такой проект уже реализуется межинститутским коллективом под руководством проф. С. М. Закияна. Новосибирские специалисты отработали технологии внесения мутаций в культивируемые клетки человека, в результате чего были получены клеточные модели таких заболеваний, как боковой амиотрофический склероз, болезнь Альцгеймера, спинальная мышечная атрофия, синдром удлиненного интервала QT и гипертрофическая кардиомиопатия.

Разработка методов получения из обычных соматических клеток плюрипотентных стволовых , способных превратиться в любую клетку взрослого организма, привела и к появлению клеточной инженерии, позволяющей восстанавливать пораженные структуры организма. Удивительно быстро развиваются технологии получения трехмерных структур для клеточной и тканевой инженерии на основе биоразрушаемых полимеров: протезов сосудов, трехмерных матриксов для выращивания хрящевой ткани и конструирования искусственных органов.

Так, специалисты ИХБФМ СО РАН и Национального медицинского исследовательского центра им. Е. Н. Мешалкина (Новосибирск) разработали технологию создания протезов сосудов и сердечных клапанов методом электроспиннинга . С помощью этой технологии из раствора полимера можно получить волокна толщиной от десятков нанометров до нескольких микрон. В результате серии экспериментов удалось отобрать изделия с выдающимися физическими характеристиками, которые сейчас успешно проходят доклинические испытания. Благодаря высокой био- и гемосовместимости такие протезы со временем замещаются собственными тканями организма.

Микробиом как объект и субъект терапии

К настоящему времени хорошо изучены и расшифрованы геномы многих микроорганизмов, поражающих человека. Ведутся исследования и сложных микробиологических сообществ, постоянно связанных с человеком, – ​микробиомов .

Существенный вклад в эту область исследований внесли и отечественные ученые. Так, специалисты ГНЦ ВБ «Вектор» (Кольцово, Новосибирская обл.) впервые в мире расшифровали геномы вирусов Марбург и натуральной оспы, а ученые ИХБФМ СО РАН – ​геномы вируса клещевого энцефалита, возбудителей клещевого боррелиоза, распространенных на территории РФ. Также были изучены микробные сообщества, ассоциированные с различными видами опасных для человека клещей.

В развитых странах сегодня активно ведутся работы, направленные на создание средств регуляции микробиома организма человека, в первую очередь его пищеварительного тракта. Как оказалось, от состава микробиома кишечника в огромной степени зависит состояние здоровья. Методы воздействия на микробиом уже существуют: например, обогащение его новыми терапевтическими бактериями, использование пробиотиков , благоприятствующих размножению полезных бактерий, а также прием бактериофагов (вирусов бактерий), избирательно убивающих «вредные» микроорганизмы.

В последнее время работы по созданию средств терапии на основе бактериофагов активизировались во всем мире в связи с проблемой распространения лекарственно-устойчивых бактерий. Россия – ​одна из немногих стран, где применение бактериофагов в медицине разрешено. В РФ существует промышленное производство препаратов, разработанных еще в советское время, и чтобы получать более эффективные бактериофаги, необходимо их совершенствовать, и эта задача может быть решена методами синтетической биологии.

Решением ее занимаются в ряде научно-исследовательских организаций РФ, в том числе в ИХБФМ СО РАН. В институте охарактеризованы промышленно производимые в РФ фаговые препараты, расшифрованы геномы ряда бактериофагов, а также создана их коллекция, в которую вошли и уникальные вирусы, перспективные для применения в медицине. В клинике института отрабатываются механизмы оказания персонализированной помощи больным, страдающим от бактериальных инфекций, вызванных лекарственно-устойчивыми микроорганизмами. Последние возникают при лечении диабетической стопы, а также в результате пролежней или послеоперационных осложнений. Разрабатываются и методы коррекции нарушений состава микробиома человека.

Совершенно новые возможности использования вирусов открываются в связи с созданием технологий получения интеллектуальных систем высокоизбирательного действия на определенные клетки. Речь идет об онколитических вирусах , способных поражать только опухолевые клетки. В экспериментальном режиме несколько таких вирусов уже применяются в Китае и США. Работы в этой области ведутся и в России, в них принимают участие специалисты из московских и новосибирских научно-исследовательских организаций: ИМБ РАН, ГНЦ ВБ «Вектор», Новосибирского государственного университета и ИХБФМ СО РАН.

Быстрое развитие синтетической биологии дает основание ожидать в ближайшие годы важных открытий и появления новых биомедицинских технологий, которые избавят человечество от многих проблем и позволят реально управлять здоровьем, а не только лечить наследственные и «благоприобретенные» заболевания.

Фронт исследований в этой области чрезвычайно широк. Уже сейчас доступные гаджеты представляют собой не просто игрушки, но реально полезные приборы, ежедневно обеспечивающие человека информацией, необходимой для контроля и поддержания здоровья. Новые технологии быстрого углубленного обследования дают возможность предсказать или своевременно обнаружить развитие болезни, а персонализированные препараты на основе «умных» информационных биополимеров позволят радикально решить проблемы борьбы с инфекционными и генетическими заболеваниями в самом ближайшем будущем.

Литература

Брызгунова О. Е., Лактионов П. П. Внеклеточные нуклеиновые кислоты мочи: источники, состав, использование в диагностике // Acta Naturae. 2015. Т. 7. № 3(26). С. 54-60.

Власов В. В., еще две фамилии и др. Комплементарные здоровью. Прошлое, настоящее и будущее антисмысловых технологий // НАУКА из первых рук. 2014. T. 55. № 1. С. 38-49.

Власов В. В., Воробьев П. Е., Пышный Д. В. и др. Правда о фаготерапии, или памятка врачу и пациенту // НАУКА из первых рук. 2016. Т. 70. № 4. С. 58-65.

Власов В. В., Закиян С. М., Медведев С. П. «Редакторы геномов». От «цинковых пальцев» до CRISPR // НАУКА из первых рук. 2014. Т. 56. № 2. С. 44-53.

Лифшиц Г. И., Слепухина А. А., Субботовская А. И. и др. Измерение параметров гемостаза: приборная база и перспективы развития // Медицинская техника. 2016. Т. 298. № 4. С. 48-52.

Рихтер В. А. Женское молоко – источник потенциального лекарства от рака // НАУКА из первых рук. 2013. Т. 52. № 4. С. 26-31.

Kupryushkin M. S., Pyshnyi D. V., Stetsenko D. A. Phosphoryl guanidines: a new type of nucleic Acid analogues // Acta Naturae. 2014. V. 6. № 4(23). P. 116-118.

Nasedkina T. V., Guseva N. A., Gra O. A. et al. Diagnostic microarrays in hematologic oncology: applications of high- and low-density arrays // Mol Diagn Ther. 2009. V. 13. N. 2. P. 91-102.

Ponomaryova A. A., Morozkin E. S., Rykova E. Y. et al. Dynamic changes in circulating miRNA levels in response to antitumor therapy of lung cancer // Experimental Lung Research. 2016. V. 42 N. 2. P. 95-102.

Vorobyeva M., Vorobjev P. and Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications // Molecules. 2016. V. 21 N. 12. P. 1612-1633.

Медицинская биотехнология - это новое слово, современный этап развития человечества. Невиданные ранее разработки позволяют поднимать человека на следующую степень социальной эволюции. Ведь они позволяют кардинальным образом менять вектор развития. Чтобы не ограничиваться общими фразами, повествование статьи будет вестись на основании данных, предоставленных РНПЦ трансфузиологии и медицинских биотехнологий в Минске.

Вводная информация

Человечество переживает эпоху расцвета. В профилактической и клинической медицине наблюдается экспоненциальный прогресс, равно как и в фармацевтической промышленности. Этому способствуют выдающиеся достижения в биотехнологии, а также ряде других областей науки и техники. То, что еще вчера казалось фантастикой, сегодня постепенно входит в нашу жизнь. Инновации информационных, генных и иных технологий обладают возможностью обеспечить победу в борьбе с множеством болезней. Каким образом? К примеру, внесение коррективов в геном человека позволяет увеличить продолжительность жизни. Восстановление или замена стареющих органов благодаря также позитивно скажется на каждом, кто прошел это лечение. Беременность вне стенок утробы? Поправимо. Обследовать и дистанционно консультировать пациентов? Вполне реально.

Об используемых препаратах

Наибольшего прогресса удалось достичь в фармацевтике. К ее достижениям следует отнести такие препараты:

  1. Полусинтетические/природные антибиотики, которые могут подавлять рост живых клеток. Как пример можно привести ингибиторы биосинтеза клетки, РНК (на уровне полимера, метаболизма фолиевой кислоты, ДНК-матрицы), нарушители молекулярной организации.
  2. Стероидные гормоны. Они обладают противораковыми, анаболическими, контрацептивными и противовоспалительными свойствами.
  3. Моно- и комплексные лекарства, в качестве основы которых используются аминокислоты. Как пример можно привести глицин, глутамин, метионин, раверон, румалон, тимоген, церебролизин, цистеин, эмбриобласт.
  4. Водо- и жирорастворимые витамины, обладающие высокой биологической ценностью и служащие активными катализаторами метаболических процессов в организме. В качестве примера можно привести группу Б, а также С, А, Е, К.
  5. Пробиотики, оптимизирующие микробиологический статус. К ним относятся лактобациллы, бифидо- и молочнокислые бактерии, энтерококки (некоторые их штаммы).
  6. Лейкоцитарный и что подходит для лечения вирусных гепатитов и тому подобных проблем.
  7. Ферменты, принимающие участие в биохимических реакциях в живых организмах. В качестве примера можно вспомнить трансферазы, лиазы, изомеразы, гидролазы, лигазы.
  8. Вакцины, позволяющие усилить защитные функции иммунной системы по отношению к патогенным вирусам и деструктивным организмам. Могут получаться даже с использованием технологии рекомбинантной ДНК.

Борьба со старением

Говоря о том, что собой представляет медицинская биотехнология, нельзя обойти вниманием ее исключительный вклад в противодействие процессу дряхления. Это возможно благодаря открытиям в молекулярной биологии, расшифровке генома человека и разгадке структуры ДНК, а также ряду иных успехов. Их практическое широкое применение близко к воплощению. Генодиагностика и генотерапия в ближайшие десятилетия прочно войдут в нашу жизнь. Они позволят качественно улучшить медицинское обслуживание и уже на эмбриональной стадии выявлять и устранять в щадящем режиме зачатки определенных заболеваний (онкологических, генетических, инфекционных).

Что собой представляет нанобиотехнология?

Это направление заслуживает особенного внимания в контексте рассматриваемой проблематики. Практически любой медицинский центр биотехнологии заинтересован в отменных результатах. И как это часто бывает, их можно получить на стыке разных направлений работы. Таковым объединением и стал синтез био- и нанотехнологии. Например, адресная доставка лекарственных средств с помощью нанокапсул. Чем не вариант? Проведение хирургических операций с использованием высокоточных инструментов, изготовление биореакторов для выращивания стволовых клеток, создание зондовых микроскопов и биосенсеров, фильтрация жидкостей организма от вредных веществ благодаря мембранам с нанопорами, антибактериальные перевязочные материалы с пропиткой из вещества, позволяющего мгновенно остановить кровотечение - все это далеко не предел.

О дискуссионных аспектах

Следует отметить, что РНПЦ трансфузиологии и медицинских биотехнологий функционирует не без проблем. Ведь деятельность предполагает работу с рядом дискуссионных вопросов. Если перечислять их все, то получится существенный по своему размеру список. Поэтому более целесообразно просто выделить наиболее важные моменты:

  1. Недостаточная изученность последствий при генетическом манипулировании.
  2. Сложности в определении пределов допустимого антропогенного вмешательства в идущие биологические процессы.
  3. Морально-этические неоднозначности осуществляемой деятельности с позиции человеческого достоинства и самовосприятия.

Если медицинская биотехнология сможет дать успешные и удовлетворяющие ответы на эти вопросы и вызовы, то в таком случае будут существовать все предпосылки для их безопасного использования. И тогда все смогут осознать, насколько масштабный и самостоятельный шаг в сторону управляемой эволюции был сделан.

Подготовка специалистов

В наш век машин и роботов человечество научилось тяжелый и монотонный труд поручать своим несознательным помощникам. Но, увы, сферы исследований и научных разработок слишком сложны, чтобы передать их механическим и электронным устройствам. И здесь, как нигде, актуально утверждение, что кадры решают все. Поэтому была введена отдельная специальность - медицинская биотехнология. При обучении необходимо изучать ферментацию, отдельных животных и растительных клеток, а также генную инженерию. Так, если говорить о последней, то здесь необходимо упомянуть о диагностике и идентификации мелких форм жизни. Дополнительно она работает над клонированием и секвенированием генов, а также их химическим анализом.

Как работает центр трансфузиологии и медицинских биотехнологий?

Допустим, перед исследователями стоит определенная задача. В таком случае становится актуальным вопрос о том, как же ее выполнять и достигать поставленные цели. Зависимо от рабочего фактора выделяют физические и химические методы, а по характеру воздействий - не/избирательные (в первом случае это дезинфекция и стерилизация, во втором - химиотерапевтические).

Давайте рассмотрим, что собой представляет первый вариант. Под физическими методами понимают такие:

  1. Термическая обработка. Это прокалывание, пастеризация, кипячение, автоклавирование.
  2. Облучение (гамма-, рентгеновское, ультрафиолетовое, микроволновое).
  3. Фильтрование (пропуск субстанции через определенные заслоны и материалы, обладающие, например, порами в 200 нанометров).

Среди химических методов различают:

  1. Неспецифического действия. Используются для обработки помещений и как антисептики. Для примера можно привести йод, хлор, альдегиды, спирты, соли тяжелых металлов, щелочи и кислоты, катионные детергенты, окислители, фенолы.
  2. Избирательные препараты. К таковым относятся средства, подавляющие определенный аспект жизнедеятельности. В первую очередь следует вспомнить про антибиотики, а также химиотерапевтические препараты.

Медицинские и экологические биотехнологии предполагают широкое использование различного инструментария. Поэтому без детальной характеристики общих положений их работы и применения не обойтись. И в качестве объекта рассмотрения выступят антибиотики.

Как ведется работа?

Допустим, у нас есть кластер медицинского/экологического приборостроения и биотехнологий. К нашим услугам несколько тысяч веществ, классифицированных как антибиотики. Но в реальности в качестве основы для препаратов используется значительно меньшее их количество. Это обусловлено существующими требованиями, ограничивающими применение:

  1. Должны быть эффективны в низких концентрациях.
  2. Необходимо обеспечить стабильность в организме и разных условиях хранения.
  3. Должна наблюдаться низкая токсичность (или вообще отсутствовать).
  4. Необходимым условием является наличие выраженного бактерицидного и/или бактериостатического эффекта.
  5. Не должны наблюдаться выраженные побочные эффекты.
  6. Отсутствует иммунодепрессивное воздействие.

Если с этим проблем нет, то лаборатории и институты медицинских биотехнологий переходят к следующему этапу, который заключается в том, что антибиотики разделяются по своему происхождению, направленности, спектру и механизму действия.

Пример классификации

Зависимо от спектра действия выделяют антибиотики:

  • Противоопухолевые. В качестве примера можно привести "Рифампицин".
  • Противотуберкулезные. Как пример можно привести "Канимицин" и "Стрептомицин".
  • Противогрибковые. Это "Нистатин", "Амфотеррицин", "Низорал", "Леварин".
  • Антибиотики широкого спектра действия. Это "Стрептомицин" и "Неомицин".
  • Препараты, действующие на грамположительную микрофлору. К таковым относится "Пенициллин" и "Эритромицин".
  • Препараты, действующие на грамотрицательную микрофлору. Наиболее известным представителем является "Полимиксин".

А что с другими разработками?

Направления медицинской биотехнологии настолько многочисленны и разнообразны, что пробовать выработать универсальный рецепт для них всех не предоставляется возможным. К примеру, подходы, применяемые к антибиотикам, малопригодны в генной инженерии. Это относится не только к исследованию, но и к воспроизводству и усовершенствованию наработок. К примеру, медицинская биотехнология антибиотиков уже неплохо изучена. И у нас сейчас есть множество препаратов, позволяющих бороться с самыми страшными болезнями. Но вот исправление генетических проблем - увы, это пока слабо поддается.

Еще один пример деятельности

Очень перспективным направлением работы сейчас считается генная инженерия. Только подумайте - потенциально с ее помощью можно преодолеть множество болезней и негативных состояний человеческого здоровья. Синдром Дауна, склонность к проблемам сердечной системы и множество иных неприятностей могут быть решены благодаря генной терапии или будут минимизированы. Не нужно будет ждать, пока среди поколений людей выработается иммунитет (что сопровождается многочисленными смертями). Достаточно будет пройти что-то вроде серии уколов - и у человека будет решена проблема, а также появится иммунитет.

Заключение

Технологии в сфере медицины открывают перед нами широкие возможности. Сегодня человечество, как никогда, близко к тому, чтобы решительным образом избавиться от преследующих тысячелетиями болезней и физических недостатков. Как это ни парадоксально, но наше движение к этой цели не является настолько быстрым, как нам бы этого хотелось. Почему? Здесь можно вспомнить коммерческую направленность деятельности исследовательских учреждений, существующие законодательные ограничения и неправильное использование имеющихся технологий. В качестве примера последней ситуации можно привести использование антибиотиков. Эти препараты довольно широко распространены и часто отпускаются без рецептов. Во многих отсталых странах их использование и продажа вообще слабо регламентируются или не ограничиваются вовсе. Поэтому антибиотики часто используются без предписания врача и в неправильной дозировке (слишком маленькой или с нарушением временных ограничений). А это все способствует тому, что у микроорганизмов вырабатывается устойчивость, и медицинские препараты теряют свои свойства.

gastroguru © 2017