Функции и графики. Понятие функции. Способы задания функции Табличный способ задания функции

Что означают слова "задать функцию"? Они означают: объяснить всем желающим, о какой конкретной функции идёт речь. Причём, объяснить чётко и однозначно!

Как это можно сделать? Как задать функцию?

Можно написать формулу. Можно нарисовать график. Можно составить табличку. Любой способ - это какое-то правило, по которому можно узнать значение игрека для выбранного нами значения икса. Т.е. "задать функцию" , это значит - показать закон, правило, по которому икс превращается в игрек.

Обычно, в самых различных заданиях присутствуют уже готовые функции. Они нам уже заданы. Решай себе, да решай.) Но... Чаще всего школьники (да и студенты) работают с формулами. Привыкают, понимаешь... Так привыкают, что любой элементарный вопрос, относящийся к другому способу задания функции, тотчас огорчает человека...)

Во избежание подобных случаев, имеет смысл разобраться с разными способами задания функций. Ну и, конечно, применить эти знания к "хитрым" вопросам. Это достаточно просто. Если знаете, что такое функция...)

Поехали?)

Аналитический способ задания функции.

Самый универсальный и могучий способ. Функция, заданная аналитически, это функция, которая задана формулами. Собственно, это и есть всё объяснение.) Знакомые всем (хочется верить!)) функции, например: y = 2x, или y = x 2 и т.д. и т.п. заданы именно аналитически.

К слову сказать, не всякая формула может задавать функцию. Не в каждой формуле соблюдается жёсткое условие из определения функции. А именно - на каждый икс может быть только один игрек. Например, в формуле у = ±х , для одного значения х=2, получается два значения у: +2 и -2. Нельзя этой формулой задать однозначную функцию. А с многозначными функциями в этом разделе математики, в матанализе, не работают, как правило.

Чем хорош аналитический способ задания функции? Тем, что если у вас есть формула - вы знаете про функцию всё! Вы можете составить табличку. Построить график. Исследовать эту функцию по полной программе. Точно предсказать, где и как будет вести себя эта функция. Весь матанализ стоит именно на таком способе задания функций. Скажем, взять производную от таблицы крайне затруднительно...)

Аналитический способ достаточно привычен и проблем не создаёт. Разве что некоторые разновидности этого способа, с которыми сталкиваются студенты. Я про параметрическое и неявное задание функций.) Но такие функции - в специальном уроке.

Переходим к менее привычным способам задания функции.

Табличный способ задания функции.

Как следует из названия, этот способ представляет собой простую табличку. В этой таблице каждому иксу соответствует (ставится в соответствие ) какое-то значение игрека. В первой строчке - значения аргумента. Во второй строчке - соответствующие им значения функции, например:

Таблица 1.

x - 3 - 1 0 2 3 4
y 5 2 - 4 - 1 6 5

Прошу обратить внимание! В данном примере игрек зависит от икса как попало. Я специально так придумал.) Нет никакой закономерности. Ничего страшного, так бывает. Значит, именно так я задал эту конкретную функцию. Именно так я установил правило, по которому икс превращается в игрек.

Можно составить другую табличку, в которой будет закономерность. Этой табличкой будет задана другая функция, например:

Таблица 2.

x - 3 - 1 0 2 3 4
y - 6 - 2 0 4 6 8

Уловили закономерность? Здесь все значения игрека получаются умножением икса на двойку. Вот и первый "хитрый" вопрос: можно ли функцию, заданную с помощью Таблицы 2, считать функцией у = 2х ? Подумайте пока, ответ будет ниже, в графическом способе. Там это всё очень наглядно.)

Чем хорош табличный способ задания функции? Да тем, что считать ничего не надо. Всё уже посчитано и написано в таблице.) А более ничего хорошего нет. Мы не знаем значения функции для иксов, которых нет в таблице. В этом способе такие значения икса просто не существуют. Кстати, это подсказка к хитрому вопросу.) Мы не можем узнать, как ведёт себя функция за пределами таблицы. Ничего не можем. Да и наглядность в этом способе оставляет желать лучшего... Для наглядности хорош графический способ.

Графический способ задания функции.

В данном способе функция представлена графиком. По оси абсцисс откладывается аргумент (х), а по оси ординат - значение функции (у). По графику тоже можно выбрать любой х и найти соответствующее ему значение у . График может быть любой, но... не какой попало.) Мы работаем только с однозначными функциями. В определении такой функции чётко сказано: каждому х ставится в соответствие единственный у . Один игрек, а не два, или три... Для примера, посмотрим на график окружности:

Окружность, как окружность... Почему бы ей не быть графиком функции? А давайте найдем, какой игрек будет соответствовать значению икса, например, 6? Наводим курсор на график (или касаемся рисунка на планшете), и... видим, что этому иксу соответствует два значения игрека: у=2 и у=6.

Два и шесть! Стало быть, такой график не будет графическим заданием функции. На один икс приходится два игрека. Не соответствует этот график определению функции.

Но если условие однозначности выполнено, график может быть совершенно любым. Например:

Эта самая кривулина - и есть закон, по которому можно перевести икс в игрек. Однозначный. Захотелось нам узнать значение функции для х = 4, например. Надо найти четвёрку на оси иксов и посмотреть, какой игрек соответствует этому иксу. Наводим мышку на рисунок и видим, что значение функции у для х=4 равно пяти. Какой формулой задано такое превращение икса в игрек - мы не знаем. И не надо. Графиком всё задано.

Теперь можно вернуться к "хитрому" вопросу про у=2х. Построим график этой функции. Вот он:

Разумеется, при рисовании этого графика мы не брали бесконечное множество значений х. Взяли несколько значений, посчитали у, составили табличку - и всё готово! Самые грамотные вообще всего два значения икса взяли! И правильно. Для прямой больше и не надо. Зачем лишняя работа?

Но мы совершенно точно знали, что икс может быть любым. Целым, дробным, отрицательным... Любым. Это по формуле у=2х видно. Поэтому смело соединили точки на графике сплошной линией.

Если же функция будет нам задана Таблицей 2, то значения икса нам придётся брать только из таблицы. Ибо другие иксы (и игреки) нам не даны, и взять их негде. Нет их, этих значений, в данной функции. График получится из точек. Наводим мышку на рисунок и видим график функции, заданной Таблицей 2. Значения икс-игрек на осях я не писал, разберётесь, поди, по клеточкам?)

Вот и ответ на "хитрый" вопрос. Функция, заданная Таблицей 2 и функция у=2х - разные.

Графический способ хорош своей наглядностью. Сразу видно, как ведёт себя функция, где возрастает. где убывает. По графику сразу можно узнать некоторые важные характеристики функции. А уж в теме с производной, задания с графиками - сплошь и рядом!

Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь... Мы с графиками дружить будем.)

Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели. Но на вопрос: "А четвёртый!?" - зависает основательно.)

Такой способ есть.

Словесное описание функции.

Да-да! Функцию можно вполне однозначно задать словами. Великий и могучий русский язык на многое способен!) Скажем, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Вот так! Правило установлено, функция задана.

Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно. Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить. И график построить. Кстати, график забавный получается...) Попробуйте.

Способ словесного описания - способ достаточно экзотичный. Но иногда встречается. Здесь же я его привёл, чтобы придать вам уверенности в неожиданных и нестандартных ситуациях. Нужно просто понимать смысл слов "функция задана..." Вот он, этот смысл:

Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами, песнями, плясками - сути дела не меняет. Этот закон позволяет по значению икса определить соответствующее значение игрека. Всё.

Сейчас мы применим эти глубокие знания к некоторым нестандартным заданиям.) Как и обещано в начале урока.

Задание 1:

Функция у = f(x) задана Таблицей 1:

Таблица 1.

Найти значение функции p(4), если p(х)= f(x) - g(x)

Если вы вообще не можете понять, что к чему - прочитайте предыдущий урок "Что такое функция?" Там про такие буковки и скобочки очень понятно написано.) А если вас смущает только табличная форма, то разбираемся здесь.

Из предыдущего урока ясно, что, если, p(х) = f(x) - g(x) , то p(4) = f(4) - g(4) . Буквы f и g означают правила, по которым каждому иксу ставится в соответствие свой игрек. Для каждой буквы (f и g ) - своё правило. Которое задано соответствующей таблицей.

Значение функции f(4) определяем по Таблице 1. Это будет 5. Значение функции g(4) определяем по Таблице 2. Это будет 8. Остаётся самое трудное.)

p(4) = 5 - 8 = -3

Это правильный ответ.

Решить неравенство f(x) > 2

Вот-те раз! Надо решить неравенство, которое (в привычной форме) блистательно отсутствует! Остаётся либо бросать задание, либо включить голову. Выбираем второе и рассуждаем.)

Что значит решить неравенство? Это значит, найти все значения икса, при которых выполняется данное нам условие f(x) > 2 . Т.е. все значения функции (у ) должны быть больше двойки. А у нас на графике игрек всякий есть... И больше двойки есть, и меньше... А давайте, для наглядности, по этой двойке границу проведём! Наводим курсор на рисунок и видим эту границу.

Строго говоря, эта граница есть график фукции у=2, но это не суть важно. Важно то, что сейчас на графике очень хорошо видно, где, при каких иксах, значения функции, т.е. у, больше двойки. Они больше при х> 3. При х> 3 вся наша функция проходит выше границы у=2. Вот и всё решение. Но выключать голову ещё рано!) Надо ещё ответ записать...

На графике видно, что наша функция не простирается влево и вправо на бесконечность. Об этом точки на концах графика говорят. Кончается там функция. Стало быть, в нашем неравенстве все иксы, которые уходят за пределы функции смысла не имеют. Для функции этих иксов не существует. А мы, вообще-то, неравенство для функции решаем...

Правильный ответ будет:

3 < х 6

Или, в другой форме:

х(3; 6]

Теперь всё, как надо. Тройка не включается в ответ, т.к. исходное неравенство строгое. А шестёрка включается, т.к. и функция при шестёрке существует, и условие неравенства выполняется. Мы успешно решили неравенство, которого (в привычной форме) нету...

Вот так некоторые знания и элементарная логика спасают в нестандартных случаях.)

Если поезд движется с постоянной скоростью v км/ч, то путь s км, пройденный за время t, вычисляется по формуле s = vt. Здесь v обозначает какое – то число, а s и t изменяются в каждый момент движения. Будем находить при данной постоянной скорости величину s в зависимости от времени движения t. Тогда t называется независимой переменной или аргументом , s называется зависимой переменной или функцией. Зависимость между аргументом t и функцией s записывается s(t).

Запись s(t) означает, что берутся произвольные отрезки пути и устанавливается, за какое время (при данной постоянной скорости v) может быть пройден этот путь. Например, если автомобиль движется со скоростью 50 км/ч, то на путь 100 км потребуется 100 км: 50 км/ч = 2 ч, на путь в 25 км ему потребуется 1/2 ч, на путь в 150 км/ч – 3 ч.

Если даны две переменные х и y , то говорят, что переменная y является функцией от переменной х, если задана такая зависимость между этими переменными, которая позволяет для каждого значения х однозначно определить значение у.

Запись F = у(х) означает, что рассматривается функция, позволяющая для любого значения независимой переменной х (из числа тех, которые аргумент х вообще может принимать) находить соответствующее значение зависимой переменной у.

Способы задания функции.

Функция может быть задана формулой, например:

у = 3х 2 – 2.

Давая произвольные значения независимой переменной х, вычисляют с помощью этой формулы соответствующие значения зависимой переменной у. Например, если х = -0,5, то с помощью формулы находим, что соответствующее значение у равно

3 · (-0,5) 2 – 2 = -1,25

Взяв любое значение, которое может принимать аргумент х в формуле у = 3х 2 – 2, можно с её помощью вычислить то единственное значение функции, которое ему соответствует.

Функция может быть задана, например, таблицей:

С помощью данной таблицы можно установить, что значению аргумента – 1 соответствует значение функции 1; значению х = 2 соответствует у = 10 и т.д. При этом любому значению аргумента, включённого в таблицу, соответствует только одно значение функции.

Функция может быть задана графиком. С помощью графика можно установить, какое значение функции соответствует указанному значению аргумента. Обычно это приближённое значение функции.

Свойства функции, которые необходимо учитывать при построении её графика:

1) Область определения функции.

Область определения функции, то есть те значения, которые может принимать аргумент х функции F =y (x).

2) Промежутки возрастания и убывания функции.

Функция называется возрастающей на рассматриваемом промежутке, если большему значению аргумента соответствует большее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 > х 2 , то у(х 1) > у(х 2).

Функция называется убывающей на рассматриваемом промежутке, если большему значению аргумента соответствует меньшее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 < х 2 , то у(х 1) < у(х 2).

3) Нули функции.

Точки, в которых функция F = y (x) пересекает ось абсцисс (они получаются, если решить уравнение у(х) = 0) и называются нулями функции.

4) Чётность и нечётность функции.

Функция называется чётной, если для всех значений аргумента из области определения

у(-х) = у(х).

График чётной функции симметричен относительно оси ординат.

Функция называется нечётной , если для всех значений аргумента из области определения

у(-х) = -у(х).

График чётной функции симметричен относительно начала координат.

Многие функции не являются ни чётными, ни нечётными.

5) Периодичность функции.

Функция называется периодической, если существует такое число Р, что для всех значений аргумента из области определения

у(х + Р) = у(х).

Остались вопросы? Не знаете, как построить график функции?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Задать функцию означает установить правило (закон) с помощью которого по данным значениям независимой переменной находим соответствующие им значения функции. Рассмотрим различные способы задания функции.

Эта запись определяет температуру Т как функцию от времени t:T=f(t). Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения функции сразу, без дополнительных изменений или вычислений. Недостатки: определяет функцию не полностью, а лишь для некоторых значений аргумента; не дает наглядного изображения характера изменения функции с изменением аргумента.

2. Графический способ. Графиком функцииy=f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению. Это может быть некоторая кривая, в частности прямая, множество точек на плоскости.

Преимущество – наглядность, недостаток – нет возможности точно определить значения аргумента. В технике и физике часто он является единственно доступным способом задания функции, например, при пользовании самопишущими приборами, которые автоматически записывают изменение одной величины относительно другой (барограф, термограф и др.).

3. Аналитический способ. По этому способу функция задается аналитически, с помощью формулы. Такой способ дает возможность по каждому численному значению аргумента х найти соответствующее ему численное значение функции у точно или с некоторой точностью.

При аналитическом способе функция может быть задана и несколькими разными формулами. Например, функция

задана в области определения [-, 15] с помощью трех формул.

Если зависимость между х и у задана формулой, разрешенной относительно у, т.е. имеет вид у = f(x) , то говорят, что функция от х задана в явном виде, например,. Если же значения х и у связаны некоторым уравнением видаF(x,y) = 0, т.е. формула не разрешена относительно у, то говорят, что функция задана неявно. Например,. Заметим, что не всякую неявную функцию можно представить в виде у =f(x), наоборот, любую явную функцию всегда можно представить в виде неявной:
. Еще одна разновидность аналитического задания функции – параметрическое, когда аргумент х и функция у являются функциями третьей величины – параметраt:
, где
, Т – некоторый промежуток. Такой способ широко применяется в механике, в геометрии.

Аналитический способ является самым распространенным способом задания функции. Компактность, возможность применения к данной функции аппарата математического анализа, возможность вычисления значений функции при любых значениях аргумента – его основные преимущества.

4. Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами. Например, функция Е(х) – целая часть числа х, функция Дирихле, функция Римана,n!,r(n) – число делителей натурального числаn.

5. Полуграфический способ. Здесь значения функции представляются в виде отрезков, а значения аргумента – в виде чисел, проставленных на концах отрезков, указывающих значения функции. Так, например, в термометре есть шкала с равными делениями, у которых проставлены числа. Эти числа являются значениями аргумента (температуры). Они стоят на том месте, которое определяет графическое удлинение столбца ртути (значения функции) в связи с ее объемным расширением в результате температурных изменений.

Для начала попробуй найти область определения функции:

Справился? Сравним​ ответы:

Все верно? Молодец!

Теперь попробуем найти область значений функции:

Нашел? Сравниваем:

Сошлось? Молодец!

Еще раз поработаем с графиками, только теперь чуть-чуть посложнее - найти и область определения функции, и область значений функции.

Как найти и область определения и область значений функции (продвинутый вариант)

Вот что получилось:

С графиками, я думаю, ты разобрался. Теперь попробуем в соответствии с формулами найти область определения функции (если ты не знаешь как это сделать, прочитай раздел про ):

Справился? Сверим ответы :

  1. , так как подкоренное выражение должно быть больше или равно нулю.
  2. , так как на ноль делить нельзя и подкоренное выражение не может быть отрицательным.
  3. , так как, соответственно при всех.
  4. , так как на ноль делить нельзя.

Однако, у нас остался еще один не разобранный момент…

Еще раз повторю определение и сделаю на нем акцент:

Заметил? Слово «единственный» - это очень-очень важный элемент нашего определения. Постараюсь объяснить тебе на пальцах.

Допустим, у нас есть функция, заданная прямой. . При, мы подставляем данное значение в наше «правило» и получаем, что. Одному значению соответствует одно значение. Мы даже можем составить таблицу различных значений и построить график данной функции, чтобы убедится в этом.

«Смотри! - скажешь ты, -« » встречается два раза!» Так быть может парабола не является функцией? Нет, является!

То, что « » встречается два раза далеко не повод обвинять параболу в неоднозначности!

Дело в том, что, при расчёте для, мы получили один игрек. И при расчёте с мы получили один игрек. Так что все верно, парабола является функцией. Посмотри на график:

Разобрался? Если нет, вот тебе жизненный пример сооовсем далекий от математики!

Допустим, у нас есть группа абитуриентов, познакомившихся при подаче документов, каждый из которых в разговоре рассказал, где он живет:

Согласись, вполне реально, что несколько ребят живут в одном городе, но невозможно, чтобы один человек жил в нескольких городах одновременно. Это как бы логичное представление нашей «параболы» - нескольким разным икс соответствует один и тот же игрек.

Теперь придумаем пример, когда зависимость не будет функцией. Допустим, эти же ребята рассказывали, на какие специальности они подали документы:

Здесь у нас совершенно другая ситуация: один человек может спокойно подать документы как на одно, так и на несколько направлений. То есть одному элементу множества ставится в соответствие несколько элементов множества. Соответственно, это не функция.

Проверим твои знания на практике.

Определи по рисункам, что является функцией, а что нет:

Разобрался? А вот и ответы :

  • Функцией является - В,Е.
  • Функцией не является - А, Б, Г, Д.

Ты спросишь почему? Да вот почему:

На всех рисунках кроме В) и Е) на один приходится несколько!

Уверена, теперь, ты с легкостью отличишь функцию от не функции, скажешь, что такое аргумент и что такое зависимая переменная, а так же определишь область допустимых значений аргумента и область определения функции. Приступаем к следующему разделу - как задать функцию?

Способы задания функции

Как ты думаешь, что означают слова «задать функцию» ? Правильно, это значит объяснить всем желающим, о какой функции в данном случае идет речь. Причем объяснить так, чтобы каждый понял тебя правильно и нарисованные людьми по твоему объяснению графики функций были одинаковы.

Как это можно сделать? Как задать функцию? Самый простой способ, который уже не раз применялся в этой статье - с помощью формулы. Мы пишем формулу, и, подставляя в нее значение, высчитываем значение. А как ты помнишь, формула - это закон, правило, по которому нам и другому человеку становится ясно, как икс превращается в игрек.

Обычно, именно так и делают - в заданиях мы видим уже готовые функции, заданные формулами, однако, существуют и другие способы задать функцию, про которые все забывают, в связи с чем вопрос «как еще можно задать функцию?» ставит в тупик. Разберемся во всем по порядку, а начнем с аналитического способа.

Аналитический способ задания функции

Аналитический способ это и есть задание функции с помощью формулы. Это самый универсальный и исчерпывающий и однозначный способ. Если у тебя есть формула, то ты знаешь о функции абсолютно все - ты можешь составить по ней табличку значений, можешь построить график, определить, где функция возрастает, а где убывает, в общем, исследовать ее по полной программе.

Рассмотрим функцию. Чему равно?

«Что это значит?» - спросишь ты. Сейчас объясню.

Напомню, что в записи выражение в скобках называется аргументом. И этот аргумент может быть любым выражением, не обязательно просто. Соответственно, каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении.

В нашем примере получится так:

Рассмотрим еще задание, связанное с аналитическим способом задания функции, которое будет у тебя на экзамене.

Найдите значение выражения, при.

Уверена, что сначала, ты испугался, увидев такое выражение, но в нем нет абсолютно ничего страшного!

Все как и в прошлом примере: каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении. Например, для функции.

Что же нужно сделать в нашем примере? Вместо надо написать, а вместо - :

сократить получившееся выражение:

Вот и все!

Самостоятельная работа

Теперь попробуй самостоятельно найти значение следующих выражений:

  1. , если
  2. , если

Справился? Сравним наши ответы: Мы привыкли, что функция имеет вид

Даже в наших примерах мы задаем функцию именно таким образом, однако аналитически можно задать функцию в неявном виде, например.

Попробуй построить эту функцию самостоятельно.

Справился?

Вот как строила ее я.

Какое уравнение мы в итоге вывели?

Правильно! Линейное, а это значит, что графиком будет прямая линия. Сделаем табличку, чтобы определить, какие точки принадлежат нашей прямой:

Вот как раз то, о чем мы говорили… Одному соответствует несколько.

Попробуем нарисовать то, что получилось:

Является ли то, что у нас получилось функцией?

Правильно, нет! Почему? Попробуй ответить на этот вопрос с помощью рисунка. Что у тебя вышло?

«Потому что одному значению соответствует несколько значений!»

Какой вывод мы можем из этого сделать?

Правильно, функция не всегда может быть выражена явно, и не всегда то, что «замаскировано» под функцию является функцией!

Табличный способ задания функции

Как следует из названия, этот способ представляет собой простую табличку. Да, да. Наподобие той, которой мы с тобой уже составляли. Например:

Здесь ты сразу подметил закономерность - игрек в три раза больше чем икс. А теперь задание на «очень хорошо подумать»: как ты считаешь, равносильная ли функция, заданная в виде таблицы, функции?

Не будем долго рассуждать, а будем рисовать!

Итак. Рисуем функцию, заданную обоями способами:

Видишь разницу? Дело совсем не в отмеченных точках! Присмотрись внимательнее:

Теперь увидел? Когда мы задаем функцию табличным способом, мы на графике отражаем только те точки, которые есть у нас в таблице и линия (как в нашем случае) проходит только через них. Когда мы задаем функцию аналитическим способом, мы можем взять любые точки, и наша функция ими не ограничивается. Вот такая вот особенность. Запоминай!

Графический способ построения функции

Графический способ построения функции не менее удобен. Мы рисуем нашу функцию, а другой заинтересованный человек может найти чему равен игрек при определенном икс и так далее. Графический и аналитический способы одни из самых распространенных.

Однако, здесь нужно помнить о чем мы с тобой говорили в самом начале - не каждая «загогулина» нарисованная в системе координат является функцией! Вспомнил? На всякий случай скопирую тебе сюда определение, что функцией является:

Как правило, люди обычно называют именно те три способа задания функции, которые мы разобрали - аналитический (с помощью формулы), табличный и графический, напрочь забывая о том, что функцию можно словесно описать. Как это? Да очень просто!

Словесное описание функции

Как же описать функцию словесно? Возьмем наш недавний пример - . Данную функцию можно описать «каждому действительному значению икс соответствует его утроенное значение». Вот и все. Ничего сложного. Ты, конечно, возразишь - «есть настолько сложные функции, которые словесно задать просто невозможно!» Да, есть и такие, но есть функции, которые описать словесно легче, чем задать формулой. Например: «каждому натуральному значению икс соответствует разница между цифрами, из которых он состоит, при этом за уменьшаемое берется наибольшее цифра, содержащиеся в записи числа». Теперь рассмотрим, как наше словесное описание функции реализуется на практике:

Наибольшая цифра в данном числе - , соответственно, - уменьшаемое, тогда:

Основные виды функций

Теперь перейдем к самому интересному - рассмотрим основные виды функций, с которыми ты работал/работаешь и будешь работать в курсе школьной и институтской математики, то есть познакомимся с ними, так сказать и дадим им краткую характеристику. Более подробно про каждую функцию читай в соответствующем разделе.

Линейная функция

Функция вида, где, - действительные числа.

Графиком данной функции служит прямая, поэтому построение линейной функции сводится к нахождению координат двух точек.

Положение прямой на координатной плоскости зависит от углового коэффициента.

Область определения функции (aka область допустимых значений аргумента) - .

Область значений - .

Квадратичная функция

Функция вида, где

Графиком функции является парабола, при ветви параболы направлены вниз, при — вверх.

Многие свойства квадратичной функции зависят от значения дискриминанта. Дискриминант вычисляется по формуле

Положение параболы на координатной плоскости относительно значения и коэффициента показаны на рисунке:

Область определения

Область значений зависит от экстремума данной функции (точки вершины параболы) и коэффициента (направления ветвей параболы)

Обратная пропорциональность

Функция, задаваемая формулой, где

Число называется коэффициентом обратной пропорциональности. В зависимости от того, какое значение, ветви гиперболы находятся в разных квадратах:

Область определения - .

Область значений - .

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

1. Функцией называется правило, по которому каждому элементу множества ставится в соответствие единственный элемент множества.

  • - это формула, обозначающая функцию, то есть зависимость одной переменной от другой;
  • - переменная величина, или, аргумент;
  • - зависимая величина - изменяется при изменении аргумента, то есть согласно какой-либо определенной формуле, отражающей зависимость одной величины от другой.

2. Допустимые значения аргумента , или область определения функции - это то, что связано с возможными, при которых функция имеет смысл.

3. Область значений функции - это то, какие значения принимает, при допустимых значениях.

4. Существует 4 способа задания функции:

  • аналитический (с помощью формул);
  • табличный;
  • графический
  • словесное описание.

5. Основные виды функций:

  • : , где, - действительные числа;
  • : , где;
  • : , где.
gastroguru © 2017