Диоксид титана - свойства и область применения. Российский рынок диоксида титана: реалии и перспективы Для чего используется диоксид титана

Благодаря своим свойствам сегодня диоксида титана используется при производстве широкого круга товаров различного назначения. Так, более 50% всего объема диоксида титана идет на изготовление товаров лакокрасочной отрасли (титановые белила), поскольку диоксид обладает отличными красящими свойствами. Это: краски (глянцевые, матовые и полуматовые, силикатные, кремнийорганические, порошковые, эмульсионные и с наполнителями для разнообразных строительных, ремонтных и промышленных работ, печати), лаки и эмали, смеси и растворы для грунтования, шпаклевки, штукатурки, цементирования, а также полиуретановые и эпоксидные покрытия, в том числе и для древесины. Диоксид, как и металл, белого цвета, поэтому используется он в качестве пигмента. Главное его достоинство – нетоксичность и безвредность. Кроме того, покрытия приобретают высокую стойкость к воздействиям ультрафиолета, не желтеют и практически не стареют.

Более 20% объема производства двуокиси титана потребляется для изготовления пластических масс и изделий на их основе с высокими термическими свойствами (к примеру, оконный пластик, различная мебель, предметы быта, детали автомобилей, машин и техники), а также каучука, линолеума и резины. Здесь он выступает в роли наполнителя, обеспечивая стойкость изделий и поверхностей к изменениям светопогоды, сопротивление при смене среды, защиту от агрессивных факторов.

Около 14% используется при производстве бумаги (белой, цветной, пропитанной), картона, обоев. Диоксид титана играет важную роль при пигментовании. Для придания бумаге гладкости, белости и высоких свойств при печати на поверхность наносят диоксид или его смеси с другими пигментами.

Диоксид титана химической чистоты 99,9998% применяется при производстве оптоволоконных изделий, медицинского оборудования, в радиоэлектронной промышленности. При изготовлении сверхчистых стекол диоксид служит эталоном чистоты. Также он незаменим при выработке термостойкого и оптического стекла, как огнеупорное защитное покрытие при сварочных работах. При производстве керамики диоксид используется для придания максимальной белости черепку либо же эмали (ангобам).

Известно применение оксида титана в косметической отрасли, в частности для усиления свойств солнцезащитных средств, отбеливающих возможностей различных кремов и пр. Упаковочные материалы с использованием диоксида титана играют важную роль при транспортировке и хранении нестойких к солнечному свету продуктов. В пищевой промышленности диоксид используют для отбеливания таких продуктов, как рыбные фарши и полуфабрикаты, белое мясо (кальмар, курица), сахар-рафинад, жевательные резинки, драже и т. д. При этом, конечно же, регламентируется максимальная концентрация диоксида в массе продукта.

Также соединение может использоваться как катализатор в химическом и фармацевтическом производстве для получения специфических промежуточных продуктов.

В целом, для каждого производства нормируется чистота диоксида, количество и характер примесей, допустимые массовые концентрации и другие показатели. Производство и потребление диоксида титана на сегодня является одним из показателей развития экономики.

Диоксид титана TiO2 полиморфен, он кристал­лизуется в двух сингониях: брукит - в ромбической, рутил и анатаз - в тетрагональной, но последние различаются строением кристаллической решетки. В обоих случаях каждый атом титана находится в центре октаэдра и окружен 6 атомами кислорода. Пространственное же рас­положение октаэдров разное: в анатазе на каждый октаэдр при­ходится 4 общих ребра, в рутиле только 2. Элементарная ячейка анатаза состоит из четырех молекул, а рутила только из двух:

Благодаря более плотной упаковке ионов в кристаллах рутил пре­восходит анатаз по стабильности, плотности, твердости, показателю пре­ломления, диэлектрической постоянной и обладает пониженной фотохими­ческой активностью. При температуре 915 0C ‑ 950 0C анатаз переходит в рутил, но полученный при этом рутил отличается высокой абразивностью и низкой дисперсностью. В 1949 г. была найдена возможность управления кристаллизацией введением рутилизирующих добавок и зародышей. Ионы Zn2+, Mg2+, Al3+, Sn2 + являются стабилизаторами рутильной формы, ионы SO42-, PO43 - - анатазной. В присутствии даже малых количеств соединений фосфора переход анатаза в рутил становится невозможным. Рутилизирующие за­родыши получают, обрабатывая гидратированный диоксид титана после пятой стадии промывки раствором едкого натра. При этом образуется тетратитанат натрия Na2Ti4O3, который обрабатывают соляной кислотой, и пептизируют продукт гидролиза, предварительно освобожденный от ионов SO42-. Такие зародыши вводятся перед прокаливанием.

Рутил, прокаленный при температуре около 10000C и содержащий примеси Fe, Cr, Ni, Mn, проявляет свойство фототропии. При освещении он становится коричневым, в темноте вновь светлеет. Это объясняется окислением примесных металлов в высшие оксиды вследствие выделения кислорода при освещении ТiO2 с деформированной решеткой.

В чистом виде диоксид титана, особенно в анатазной форме, обладает высокой фотохимической активностью, что вызывает разрушение лакокрасочной пленки («меление») и выцветание органических пигментов. Модифицирование поверхности частиц диоксида титана гидроксидами Al, Si, Zn резко уменьшает фотохимическую активность.

Диоксид титана химически инертен, нерастворим в слабых кислотах и щелочах и органических растворителях. Не ядовит, ПДК в воздухе рабочих зон 10 мг/м3. Может применяться со всеми видами пленкообразователей и растворителей. Пригоден для водоэмульсионных, воднодисперсионных и порошковых красок. Пигментный диоксид титана также широко используется для окрашивания изделий из резины, пластмасс, линолеума, бумаги и химических волокон. Кроме пигментного диоксида титана, содержащего 82-95 % (масс.) TiO2, вырабатывается диоксид титана для твердых сплавов, стекол, керамики с более высоким содержанием TiO2.

Сырье, для получения диоксида титана. Для переработки в пигментный диоксид титана используются минералы: природный рутил, содержащий 92-95 % (масс.) TiO2 и примесь Fe2O3, придающую ему красный цвет (рутил красный); ильменит FеО*ТiO2 или - арканзит Fe2O3*3ТiO2; титаномагнетиты,
состоящие из зерен ильменита и магнетита и содержащие 8-12 % (масс.) TiO2.

В чистом виде титансодержащие минералы встречаются редко. Для освобождения от примесей других минералов и пустой породы измель­ченные руды подвергают магнитному и другим видам обогащения и получают концентраты примерного состава, % (масс.):

Технология производства пигментного диоксида титана. Переработка титановых концентратов и шлаков в пигментный диоксид титана имеет целью не только освобождение от примесей, но и придание TiO2 требуемой кристаллической формы, дисперсности, адсорбционных свойств и подав­ление фотохимической активности. Для получения диоксида титана приме­няют два способа: сернокислотный - для концентратов, содержащих более 40 % TiO2, и хлоридный,- экономически выгодный только для переработки концентратов, содержащих не менее 80 % TiO2 (так как получаемые отходы FeCl3 не находят применения).

Сернокислотный способ. Это тонкий и сложный процесс, состоящий из трех основных стадий и ряда вспомогательных операций (см. схему 2.1).

1. Первой стадией является разложение тонкоизмельченного
титан-содержащего
концентрата
85-92 %-ной серной кислотой при 180-220 0C и непрерывном перемешивании реакционной массы сжатым воздухом с получением прозрачного раствора титанилсульфата TiOSO4. При этом протекают следующие экзотермические реакции разложения:

а также аналогичные реакции с оксидами Mn, Ca, Al и другими примеся­ми. Все реакции протекают бурно после предварительного нагрева с выделением большого количества паров воды, H2SO4, SO3 и SO2, которые улавливают­ся в скруббере, орошаемом водой. Реакцию разложения проводят периоди­ческим методом.

Многочисленные попытки применения реакторов непрерывного действия с механическим перемешиванием не оправдали себя как технически, так и экономически, так как наблюдался большой коррозионный и эрозионный износ аппаратуры.

Кислые растворы сульфатов титана, железа и других элементов, присутствующих в сырье, имеют сложный коллоидно-химический состав, изменяющийся в зависимости от содержания кислоты, температуры, времени выдержки.

При проведении реакции разложения реактор непрерывно продувают сжатым воздухом, который перемешивает суспензию, а затем при кристаллизации солей и застывании плава делает его пористым. После окончания реакции разложения и охлаждения плава выход по титану составляет 96-98 %. В реактор подают воду (из расчета получения раствора с содержанием TiО2 примерно 120 г/л) и все водорастворимые соли переходят в раствор.

Для последующего удаления сульфата железа(II) из раствора титанилсульфата проводят восстановление ионов Fe3+ до Fe+, для чего в реактор добавляют чугунную стружку. В кислой среде проходит реакция восстановления Fe3+ -->- Fe2+ выделяющимся водородом. Одновременно восстанавливается и небольшое количество (3-5 г/л) Ti4+ до Ti3+. Соединения Ti3+ являются сильными восстановителями, они исключают возможность повторного окисления воздухом Fe2+ и этим предотвращают адсорбцию ионов Fe3+ на диоксиде титана, придающих ему желтую окраску.

Кислые растворы титанилсульфата, сульфатов железа, алюминия, марганца отстаивают или отфильтровывают от шлама, состоящего из остатков неразложившейся руды, диоксида кремния, нерастворимого сульфата кальция, а затем осветляют, отделяя коллоидные частицы коагуляцией с помощью флокулянтов - высокомолекулярных ПАВ. После вакуум-кристаллизации железный купорос FeSO4*7H2O отделяют от раствора центрифугированием или фильтрованием. Железный купорос является побочным продуктом производства.

2. Важнейшей стадией, определяющей пигментные свойства диоксида титана, является термический гидролиз титанилсульфата, протекающий по реакции:

Это уравнение не раскрывает сложного хода реакции гидролиза и полного состава получаемых веществ. Титанил-ионы в водном растворе образуют гидроксокомплексы I, II, в которых атомы титана связаны через оловые мостики. При термическом гидролизе происходит переход оловых мостиков в оксо-связи:

Такой продукт гидролиза по брутто-составу примерно соответствует TiO(OH)2 и его называют метатитановой кислотой
(MTK). Фактически часть основных групп в полиионе замещены на сульфогруппы, которые частично сохраняются в виде концевых групп и в продукте гидролиза, имеющем полимерное строение и называемом гидратированным диоксидом титана (ГДТ): TiO2*0,71H2O*0,07SO3.

Для ускорения гидролиза и повышения выхода, а главное, для получения частиц ГДТ определенного размера в предгидролизный раствор вводят специально подготовленные зародыши. Для получения зародышей отбирают 0,3-0,5 % (масс.), в расчете на TiO2, предгидролизного кислого раствора в отдельный реактор, где при непрерывном перемешивании его нейтрализуют раствором NaOH до рН = 3. При этом выпадает коллоидный осадок гидрозоля гидроксида титана, после 1-2-часовой выдержки при 60-80 0C переходящий в микрокристаллические зародыши переменного состава. Условия приготовления зародышей определяющее влияют на процесс гидролиза и качество пигмента.

Так как в растворах с концентрацией TiO2 < 200 г/л рано наступает коагуляция продуктов гидролиза, что препятствует кристаллохимическому росту частиц, предгидролизные растворы предварительно концентрируют до содержания в них TiO2 200-240 г/л. Это осуществляют в вакуум-выпарных аппаратах при 60 0C. Гидролиз проводят в реакторах, снабженных мешалкой и змеевиками для обогрева и охлаждения. Подготовленный предгидролизный раствор нагревают, вводят зародыши, доводят до кипения (105-1100C), разбавляют водой и продолжают кипятить до 96-97 %-ного превращения титанилсульфата в ГДТ, который отделяют от раствора фильтрованием и промывают водой. Сульфаты в кислой среде не гидролизуются и остаются в растворе серной кислоты.

Осажденный ГДТ подвергают 3-6-кратной промывке, на последних стадиях деминерализованной водой. Однако полностью отмыть прочно адсорбированные ионы Fe3+ не удается. Для удаления оставшихся ионов Fe3+ проводят «отбелку»: ионы Fe3+ восстанавливают водородом до Fe2+, для чего вводят порошок металлического цинка и химически чистую серную кислоту. После отбелки проводят солевую обработку, добавляя для получения рутильной формы TiO2 до 3 % (масс.) ZnO и специально приготовленные рутилизирующие зародыши. Для получения анатазной формы TiO2 вводят минерализатор К2СО3, облегчающий удаление воды при прокаливании, и 0,5 % фосфорной кислоты, стабилизирующей анатазную форму.

3. Следующей стадией является
прокаливание ГДТ с получением диоксида титана:

При прокаливании вместе с водой удаляется и SO3 [состав ГДТ TiO2*0,71H2O*0,07SO3].

Прокаливание проводят в трубчатых вращающихся печах при температуре 850-900 0C, время пребывания продукта в печах - около 8 ч. Выходящие из печей дымовые газы подвергаются мокрой очистке от SO3, Н2SO4 и уносимой газами пыли ТiO2 в скрубберах, орошаемых аммиачной водой. Полученный диоксид титана охлаждают и размалывают.

4. Заключительными операциями получения пигментного диоксида титана являются мокрый размол, классификация частиц по размерам и поверхностная обработка (см. схему). Предварительно измельченный в сухом виде диоксид титана репульпируют в очищенной воде (300- 350 г/л TiO2), добавляют силикат натрия и щелочь и подвергают

непрерывному мокрому размолу в шаровой или в бисерной мельнице. Вытекающая из мельницы пульпа направляется для классификации частиц в гидроциклоны или центрифуги. Отделенные частицы размерами более 1 мкм возвращают на повторный размол.

Пульпу с частицами менее 1 мкм подвергают солевой обработке растворами Al(SO4)3, NaOH, Na2SiO3, ZnSO4и коагулируют. Осадок TiO2 отфильтровывают и отмывают от ионов Na + и SO42-. В зависимости от дальнейшего назначения диоксид титана обрабатывают модификаторами - ПАВ или кремнийорганическими соединениями. Полученный пигментный диоксид титана сушат, подвергают микронизации и упаковывают. На предприятия, производящие воднодисперсионные лакокрасочные материалы, диоксид титана перевозят в цистернах в виде 65-70 %-ной водной пасты. Операция сушки в технологическом процессе получения TiO2 таким образом исключается.

Недостатком сернокислотного способа является большой расход серной кислоты - 2,1 т на 1 т диоксида титана. Вся серная кислота превращается в отходы: кислые шламы, железный купорос, разбавленную и загрязненную «гидролизную» кислоту и очень разбавленные кислые воды от промывки железного купороса, ГДТ и газовых выбросов.

Железный купорос, получаемый в количестве 3,2-3,6 т на 1 т TiO2, используется в производстве желтых и красных железо-оксидных пигментов и как коагулянт при очистке водопроводной воды. Избыток купороса прокаливают с известью и получают «окатыши» - сырье для доменной выплавки чугуна. Выделяющиеся газы SO2 и SO3 снова превращают в серную кислоту.

Разбавленную 15-20 %-ную гидролизную кислоту концентрировать весьма трудно, так как имеющиеся в ней соли Al, Mg, Fe и другие образуют гелеобразные шламы. Гидролизную кислоту используют для производства удобрения - суперфосфата.

Таким образом, производство диоксида титана сернокислотным способом представляет собой сложный комплекс производств серной кислоты, суперфосфата, железооксидных пигментов и металлургического сырья, а иногда и выплавки чугуна, и все же большое количество шлама и сильно разбавленных кислых промывных вод остается неиспользованным.

Хлоридный способ. Получение пигмента по этому способу основано на хлорировании брикетов из высококонцентрированного титансодержащего сырья с восстановителем коксом в реакторе непрерывного действия при 800 0C:

Одновременно хлорируются и примеси Fe(II и III), Al, Si. Тетрахлорид титана TiCI4 представляет собой жидкость с температурой кипения 1350C и температурой замерзания - 230C. Трихлорид железа - твердое вещество с температурой плавления 282 0C и температурой кипения 3150C. Дихлорид железа FeCl2 - также твердое вещество, возгоняется при 672 0C. Большая разница в температурах кипения хлоридов титана и железа позволяет двухкратной ректификацией разделять продукты хлорирования с получением TiCl4 высокой степени чистоты и отходов SiCl4, FeCl3. Поэтому для хлоридного способа приемлемо сырье только с очень высоким содержанием TiO 2 (не менее 85 %). На воздухе TiCl4 сильно дымит, гидролизуясь в Ti(OH)4, поэтому вся аппаратура должна быть герметичной и стойкой к действию хлора.

Чистый TiCl4 перерабатывается в TiO 2 по одному из двух следующих методов.

1. Окисление
TiCl 4 воздухом, (разбавленным азотом для снижения температуры):

Реакция проводится в специальной горелке. Хлор, разбавленный азотом, подвергается регенерации и возвращается в процесс хлорирования. Прогрессивным способом является сжигание TiCl4 в плазмотроне, где кислород воздуха предварительно ионизируют нагреванием до 2000 0C с помощью пусковой вольтовой дуги и постоянного высокочастотного электрообогрева. Полученные частицы TiO 2 подвергают резкому охлаждению - «закалке» во избежание их роста, агрегации и спекания.

2. Гидролиз перегретым до 4000C водяным паром по реакции:

Образующийся в этом процессе анатаз быстро переходит в рутил. Парофазный гидролиз мало применяется, так как необходимо регенерировать хлор из HCl, что требует больших затрат.

Полученный обоими способами высокодисперсный диоксид титана отделяется от реакционных газов в электрофильтрах. Для освобождения от адсорбированных Сl2 или HCl проводится дехлорирование продувкой перегретым паром. Вся аппаратура хлоридного способа производства TiO 2 изготовляется из чистого. металлического титана, поэтому продукт не загрязняется и отличается высокой белизной и хорошей разбеливающей способностью. В процессе окисления в зону реакции могут быть введены модификаторы - алюминий и кремний.

Хлоридный процесс производства TiCl4 характеризуется применением особо высокогерметичного оборудования и высокой культурой производства. Это необходимо, чтобы не допускать загрязнения окружающей среды хлором и другими отходами (FeCl2 и FeCl3).

В мировой практике хлоридным способом вырабатывается менее 30% TiO 2 но этот способ перспективен, поскольку связан также с получением из TiCl4 чистого металлического титана.

В современно мире титановая индустрия развивается стремительно. Она является источником появления большого количества веществ, которые используются в разных сферах промышленности.

Характеристики диоксид титана

Диоксид титана обладает большим количеством названий. Он является амфотерным оксидом четырехвалентного титана. Он играет важную роль в развитии титановой индустрии. Только пять процентов титановой руды идет на производство оксида титана.

Есть большое количество модификаций диоксида титана. В природе встречаются кристаллы титана, которые обладают формой ромба или четырехугольника.

Диоксид титана формула представлена следующим образом: TiO2.

Диоксид титана нашел широкое распространение в различных отраслях промышленности. Он известен во всем мире в качестве такой пищевой добавки, как Е-171. Однако у данного компонента есть ряд негативных действий, что может свидетельствовать о том, что диоксид титана вред несет для организма человека. Известно, что этот компонент обладает отбеливающими качествами. Это может быть хорошо при производстве синтетических моющих средств. Вред для организма человека этой пищевой добавки представляет собой угрозу печени и почкам.

В пищевой промышленности есть вероятность появления вреда от диоксида титана. При избыточном его использовании продукция может приобрести нежелательный оттенок, что только оттолкнет потребителей.


Диоксид титана обладает достаточно низким уровнем токсичности.

Он может стать токсичным при взаимодействии с другими компонентами какой - либо продукции. Использование продукции с высоким содержанием токсинов может привести к отравлениям или даже к смертельному исходу. Поэтому очень важно знать, с какими элементами не стоит использовать оксид титана.

Свойства диоксида титана

У диоксида титана имеется большое количество характерных для него свойств. Они определяют возможность его использования в разных отраслях промышленности. Диоксид титана свойства имеет следующие:

  • отличная степень отбеливания различных видов материалов,
  • отлично взаимодействует с веществами, которые предназначены для образования пленки,
  • устойчивость к высокому уровню влажности и к условиям окружающей среды,
  • низкий уровень токсичности,
  • высокий уровень стойкости с химической точки зрения.

Получение диоксид титана


Ежегодно в мире производится более пяти миллионов тонн диоксида титана. За последнее время его производство очень сильно увеличил Китай. Мировыми лидерами по получению этого вещества являются США, Финляндия, Германия. Именно эти государства имеют большие возможности для получения этого компонента. Они экспортируют его в разные страны мира.

Диоксид титана получение возможно двумя основными методами:

1. Изготовление диоксида титана из ильменитового концентрата.

На производственных предприятиях процесс получения оксида титана таким образом делится на три этапа. На первом из них осуществляется обработка ильменитовых концентратов при помощи серной кислоты. В итоге образуются два компонента сульфат железа и сульфат титана. Затем осуществляет повышения уровня окисления железа. В специальных фильтрах происходит разделение сульфатов и шламов. На втором этапе производится гидролиз сульфатный солей титана. Гидролиз осуществляется путем использования зародышей из растворов сульфатов. В результате образуются гидраты оксида титана. На третьем этапе производится их нагревание до определенной температуры.

2. Изготовление диоксида титана из тетрахлорида титана.

В данном виде получения вещества существует три метода, которые представлены:

  • гидролизом водных растворов тетрахлорида титана,
  • парофазным гидролизом тетрахлорида титана,
  • термической обработкой тетрахлорида титана.

Таблица. Производители диоксид титана.

Предприятие Объемы производства, тыс. тонн
DuPont Titanium Technologies 1150
National Titanium Dioxide Co н/д
Ltd. (Cristal) 705
Huntsman Pigments 659
Tronox, Inc. 642
Kronos Worldwide, Inc. 532
Sachtleben Chemie GmbH 240
Ishihara Sangyo Kaisha, Ltd 230

В современном мире оксид титана активно применяется в различных отраслях промышленности.

Диоксид титана применение имеет следующее:

  • Изготовление лакокрасочной продукции. В большинстве случаев на основе этого компонента производятся титановые белила.
  • использование при производстве пластмассовых материалов.
  • изготовление бумаги ламинированного типа,
  • Изготовление косметических декоративных средств.

Оксид титана также нашел широкое применение в пищевой промышленности. Производители добавляют его в свои изделия в качестве одного из компонентов красителей пищевого типа. В продуктах питания он практически не ощущается. Производители добавляют его в минимальных количествах для того, чтобы их продукция лучше хранилась и имела привлекательный внешний вид.

Титановые белила, или диоксид титана (химическая формула – TiO2), используют в производстве химических соединений и продуктов питания . На них стоит маркировка е171, что говорит о наличии этого вещества белого цвета, не имеющего запаха. Благодаря этой добавке продукты имеют идеально белый цвет. Краситель считается безопасным, поэтому он входит в состав детских продуктов. Насколько действительно безвредно это вещество?

Характеристика соединения

Попробуем разобраться, вредна ли пищевая добавка, которую получают из природных соединений. В пищевой промышленности применяется с 1994 года в качестве белого красителя . Это чистое вещество с небольшим количеством примесей, улучшающих качество продукта.

Ttitanium Dioxide обладает следующими свойствами:

  1. Способность отбеливать продукты питания.
  2. Химическая устойчивость.
  3. Низкая токсичность.
  4. Устойчивость к влаге и воздуху.
  5. Отсутствие запаха и вкуса.

Основная роль TiO2 – отбеливание продукта, что придает ему привлекательный внешний вид. Многие продукты имеют серый оттенок: мука, рыбные изделия, жевательная резинка и другие. За счет Е171 они имеют идеально белый цвет, что делает их внешний вид красивым, повышая уровень продаж.

Применение данного соединения

Вначале титановые белила были компонентом различных красок. Сегодня в этом качестве они не утратили свою роль. Во всех странах мира они служат наполнителем лаков и красок. В пищевой промышленности пищевая добавка стала использоваться значительно позже, под номером Е171, которым подкрашивают:

  • крабовые палочки и некоторые морепродукты, продукты из рыбы ;
  • сухие смеси для детей;
  • быстрые завтраки;
  • конфеты и белый шоколад;
  • сухое молоко;
  • жевательную резинку;
  • растительные консервы;
  • деликатесную продукцию.

Краситель применяют даже для осветления муки в массовом производстве пельменей. Его количество зависит от требуемой белизны теста. Нужное количество красителя вносят в муку и смешивают с ней равномерно, получая необходимую окраску.

Его используют в производстве мороженого, йогурта, кефира, сметаны и многих других продуктов, которые имеют белый цвет . Если вы покупаете продукт белой окраски, то на 90% в нем содержится данный компонент.

Стоимость химпрепарата сравнительно небольшая, поэтому его применение экономически эффективно, так как цена продукции, в которой он используется, не возрастает.

Нужен краситель и в косметике, где он придает крему белый цвет. Он обладает таким качеством, как светонепроницаемость, поэтому широко применяется в кремах для загара. Это один из самых эффективных компонентов, отражающих УФ-лучи, которые оказывают негативное влияние на кожу.

Преувеличена ли опасность

Поскольку титановые белила входят в состав самых разнообразных продуктов потребления, ученые провели исследование, как он влияет на организм человека. Двуокись титана пигментная пожаро- и взрывобезопасна, по степени воздействия на организм относится к веществам 4-го класса опасности. Изначально разговоры велись о том, что соединение абсолютно безвредно.

Ученые Калифорнийского университета в Лос-Анджелесе поставили опыты на мышах и выяснили, что частицы Е171 вызывают негативные перемены на генетическом уровне. Наночастицы повреждают хромосомы, что влияет на наследственность . Было обнаружено и поражение клеток, в которых начинались воспалительные процессы. А это прямой путь к развитию злокачественных новообразований.

Краситель не выводится через кожу, накапливаясь в организме. Наночастицы не откладываются в определенном месте: имея мелкий размер, они перемещаются по всему телу, попадая в клетки и влияя на их работу. К этому процессу применим термин «окислительный стресс», который губит клетки. Опасны именно мелкие частицы, так как сам титан химически инертен (неактивен). Данное вещество наносит вред на клеточном уровне, что особенно опасно.

Исследования в этой области продолжаются, пока опасность раковых опухолей и генетических изменений грозить только работникам предприятий, которые постоянно контактируют с данным веществом. Но уже и это исследование дает повод для беспокойства, учитывая, что соединение используется в детском питании, оказывая влияние на растущий организм.

Диоксид титана сегодня является незаменимым соединением. Это единственный отбеливатель бумаги, пластмасса, красок, продуктов, зубных паст, косметики. Ежегодно производится до 2 млн тонн соединения. Краситель попадает в организм человека при дыхании, но не через кожу.

Нет единого мнения о вреде или пользе данной пищевой добавки . Его вред полностью не доказан, но и безвредность находится под вопросом. Проведя первые исследования, его определили в список разрешенных пищевых добавок.

Покупая продукты белого цвета, мы не имеем возможности выбирать, потому что альтернативы отбеленным красителем средств потребления просто нет. Но если диоксид титана действительно опасен, то лучше покупать неприглядные продукты серого цвета, чем иметь гамму заболеваний, вызванных данным веществом.

Фармакологическая «чистота» — Фармакологические предприятия нередко называют «чисто химическими» производствами: большинство применяемых сырьевых компонентов относится к продуктам химического синтеза с высокой степенью чистоты, то есть с минимальным содержанием сторонних примесей.

Кроме того, практически вся фармакологическая продукция допускается к применению после многочисленных исследований и апробаций, что опять же позволяет говорить о чистоте производства. Разумеется, речь идет об условной, а не об абсолютной чистоте: там, где это необходимо, целесообразно и безопасно, фармацевты применяют дополнительные вещества и компоненты, к числу которых можно отнести и рассматриваемый в данной публикации диоксид титана (химическая формула TiO2).

Зачем фармацевтам диоксида титана?

Диоксид титана можно встретить в формуле различных лекарственных средств. Назначение этого вещества – придать препарату белизну, сделать его более презентабельным с точки зрения потребителя. Наиболее часто диоксид титана применяют при производстве таблетированных средств, в том числе микроэлементных и витаминных комплексов. Добавляют также диоксид титана в различные кремы, порошки, суппозитории, пасты и прочие фармакологические средства белого цвета.

В фармакологическом производстве используют мелкодисперсный порошкообразный диоксид титана. Как правило, это вещество вводят в ничтожно малых количествах, не влияющих на структуру и консистенцию препаратов. Официальной наукой установлено, что TiO2 биоинертен, то есть данный компонент нейтрален по отношению к организму человека при пероральном употреблении и при нанесении на кожные покровы. Исключение составляет лишь ингаляционное введение: при вдыхании большого количества частиц диоксид титана может спровоцировать раздражение слизистых оболочек дыхательных путей и вызвать кашель. Опять же, данный эффект вызван не химическими, а физическими свойствами TiO2.

Скандал вокруг двуокиси титана

Примерно в начале нашего столетия одна предприимчивая особа из России основала фармакологическое производство и наладила выпуск крема, основным компонентом которого является двуокись титана. Справедливости ради надо отметить, что вышеупомянутая личность обладала обширными медицинскими познаниями, и даже удостоилась научных званий. Новоявленная промышленница утверждала, что выпускаемый ею крем обладает транскутанным эффектом, то есть способен доставлять биологические активные вещества сквозь кожу и слизистые оболочки к поврежденным тканям, и что этот эффект вызван именно титаном.

Описываемый состав позиционировался для потребителя как лечебный, чуть ли не как панацея для людей с заболеваниями суставов и переломами костных тканей, однако официально крем на основе титана был сертифицирован как косметическое, а не как лечебное средство. Это противоречие вызвало бурный резонанс и скандал вокруг «титанового крема»: производительницу обязали устранить разногласия, в результате чего средство так и осталось в разряде косметических.

Остаются невыясненными мотивы: то ли предприимчивая особа не пожелала вкладывать деньги в исследования и апробации, то ли у нее не хватило средств на изыскание доказательств транскутанного эффекта «титанового крема», то ли на это были какие-либо иные причины и обстоятельства. Тем не менее, факт безвредности остался фактом, и «чудо-крем» с содержанием двуокиси титана продолжают выпускать и в наши дни, но теперь позиционируя его исключительно как косметический продукт для нанесения на кожу.

Неопределенное будущее двуокиси титана в фармацевтике

В распоряжении современных ученых имеются новые инструменты и методологии, позволяющие по-новому взглянуть на диоксид титана. В специализированной медико-фармакологической прессе появляются данные о новых исследованиях, заставляющие задуматься о целесообразности применения TiO2 в фармакологическом производстве и сопряженных с использованием двуокиси титана рисках. Возможно, в скором времени появятся новая информация, основанная не на догадках и предположениях, а на серьезных медицинских исследованиях. Быть может, в недалеком будущем диоксид титана окажется под запретом. Также не исключено, что будет доказано позитивное влияние TiO2 на транскутанные или иные обменные процессы, в результате чего фармакологическое производство обогатится новым семейством средств. Одним словом, пока объективных данных для запрета нет, и поэтому спрос на диоксид титана стабильно растет пропорционально объемам выпуска фармакологической продукции.

gastroguru © 2017