Наибольшее и наименьшее значение функции на отрезке. Наибольшее и наименьшее значения функции на отрезке Как находить наименьшее значение функции промежутке

Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

  • область определения функции
  • область значений функции
  • нули функции
  • промежутки возрастания и убывания
  • точки максимума и минимума
  • наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:

Абсцисса - это координата точки по горизонтали.
Ордината - координата по вертикали.
Ось абсцисс - горизонтальная ось, чаще всего называемая ось .
Ось ординат - вертикальная ось, или ось .

Аргумент - независимая переменная, от которой зависят значения функции. Чаще всего обозначается .
Другими словами, мы сами выбираем , подставляем в формулу функции и получаем .

Область определения функции - множество тех (и только тех) значений аргумента , при которых функция существует.
Обозначается: или .

На нашем рисунке область определения функции - это отрезок . Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции - это множество значений, которые принимает переменная . На нашем рисунке это отрезок - от самого нижнего до самого верхнего значения .

Нули функции - точки, где значение функции равно нулю, то есть . На нашем рисунке это точки и .

Значения функции положительны там, где . На нашем рисунке это промежутки и .
Значения функции отрицательны там, где . У нас это промежуток (или интервал) от до .

Важнейшие понятия - возрастание и убывание функции на некотором множестве . В качестве множества можно взять отрезок , интервал , объединение промежутков или всю числовую прямую.

Функция возрастает

Иными словами, чем больше , тем больше , то есть график идет вправо и вверх.

Функция убывает на множестве , если для любых и , принадлежащих множеству , из неравенства следует неравенство .

Для убывающей функции большему значению соответствует меньшее значение . График идет вправо и вниз.

На нашем рисунке функция возрастает на промежутке и убывает на промежутках и .

Определим, что такое точки максимума и минимума функции .

Точка максимума - это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума - такая точка, значение функции в которой больше , чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке - точка максимума.

Точка минимума - внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума - такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке - точка минимума.

Точка - граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции . В нашем случае это и .

А что делать, если нужно найти, например, минимум функции на отрезке ? В данном случае ответ: . Потому что минимум функции - это ее значение в точке минимума.

Аналогично, максимум нашей функции равен . Он достигается в точке .

Можно сказать, что экстремумы функции равны и .

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке равно и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно . Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.

Нередко приходится решать задачи, в которых необходимо найти наибольшее или наименьшее значения из совокупности тех значений, которые на отрезке принимает функция.

Обратимся, например, к графику функции f(х) = 1 + 2х 2 – х 4 на отрезке [-1; 2]. Для работы с функцией нам необходимо построить ее график.

Из построенного графика видно, что наибольшее значение на этом отрезке, равное 2, функция принимает в точках: х = -1 и х = 1; наименьшее значение, равное -7, функция принимает при х = 2.

Точка х = 0 является точкой минимума функции f(х) = 1 + 2х 2 – х 4 . Это значит, что существует окрестность точки х = 0, например, интервал (-1/2; 1/2) – такая, что в этой окрестности наименьшее значение функция принимает при х = 0. Однако на большем промежутке, например, на отрезке [-1; 2], наименьшее значение функция принимает на конце отрезка, а не в точке минимума.

Таким образом, чтобы найти наименьшее значения функции на определенном отрезке, необходимо сравнить ее значения на концах отрезка и в точках минимума.

В целом предположим, что функция f(х) непрерывная на отрезке и что функция имеет производную в каждой внутренней точке этого отрезка.

Чтобы на отрезке найти наибольшее и наименьшее значения функции, необходимо:

1) найти значения функции в концах отрезка, т.е. числа f(а) и f(b);

2) найти значения функции в стационарных точках, которые принадлежат интервалу (a; b);

3) выбрать из найденных значений наибольшее и наименьшее.

Применим полученные знания на практике и рассмотрим задачу.

Найти наибольшее и наименьшее значения функции f(х) = х 3 + х/3 на отрезке .

Решение.

1) f(1/2) = 6 1/8, f(2) = 9 ½.

2) f´(х) = 3х 2 – 3/х 2 = (3х 4 – 3)/х 2 , 3х 4 – 3 = 0; х 1 = 1, х 2 = -1.

Интервалу (1/2; 2) принадлежит одна стационарная точка х 1 = 1, f(1) = 4.

3) Из чисел 6 1/8, 9 ½ и 4 наибольшее 9 ½, наименьшее 4.

Ответ. Наибольшее значение функции равно 9 ½, наименьшее значение функции равно 4.

Часто при решении задач необходимо найти наибольшее и наименьшее значение функции не на отрезке, а на интервале.

В практических задачах обычно функция f(х) имеет на заданном интервале лишь одну стационарную точку: или точку максимума, или точку минимума. В этих случаях функция f(х) принимает наибольшее значение на данном интервале в точке максимума, а в точке минимума – наименьшее значение на данном интервале. Обратимся к задаче.

Число 36 записать в виде произведения двух положительных чисел, сумма которых наименьшая.

Решение.

1) Пусть первый множитель равен х, тогда второй множитель равен 36/х.

2) Сумма этих чисел равна х + 36/х.

3) По условия задачи х – положительное число. Итак, задача сводится к нахождению значения х – такого, при котором функция f(х) = х + 36/х принимает наименьшее значение на интервале х > 0.

4) Найдем производную: f´(х) = 1 – 36/х 2 =((х + 6)(х – 6)) / х 2 .

5) Стационарные точки х 1 = 6, х 2 = -6. На интервале х > 0 есть только одна стационарная точка х = 6. При переходе через точку х = 6 производная меняет знак «–» на знак «+», и поэтому х = 6 – точка минимума. Следовательно, наименьшее значение на интервале х > 0 функция f(х) = х + 36/х принимает в точке х = 6 (это значение f(6) = 12).

Ответ. 36 = 6 ∙ 6.

При решении некоторых задач, где необходимо найти наибольшее и наименьшее значения функции, полезно использовать следующее утверждение:

если значения функции f(х) на некотором промежутке неотрицательны, то эта функция и функция (f(х)) n , где n – натуральное число, принимают наибольшее (наименьшее) значение в одной и той же точке.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.


Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".

Иногда в задачах B15 попадаются «плохие» функции, для которых сложно найти производную. Раньше такое было лишь на пробниках, но сейчас эти задачи настолько распространены, что уже не могут быть игнорированы при подготовке к настоящему ЕГЭ.

В этом случае работают другие приемы, один из которых - монотонность .

Функция f (x ) называется монотонно возрастающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее:

x 1 < x 2 ⇒ f (x 1 ) < f (x 2 ).

Функция f (x ) называется монотонно убывающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее:

x 1 < x 2 ⇒ f (x 1 ) > f (x 2 ).

Другими словами, для возрастающей функции чем больше x , тем больше f (x ). Для убывающей функции все наоборот: чем больше x , тем меньше f (x ).

Например, логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 < a < 1. Не забывайте про область допустимых значений логарифма: x > 0.

f (x ) = log a x (a > 0; a ≠ 1; x > 0)

Арифметический квадратный (и не только квадратный) корень монотонно возрастает на всей области определения:

Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 < a < 1. Но в отличие от логарифма, показательная функция определена для всех чисел, а не только для x > 0:

f (x ) = a x (a > 0)

Наконец, степени с отрицательным показателем. Можно записывать их как дробь. Имеют точку разрыва, в которой монотонность нарушается.

Все эти функции никогда не встречаются в чистом виде. В них добавляют многочлены, дроби и прочий бред, из-за которого становится тяжело считать производную. Что при этом происходит - сейчас разберем.

Координаты вершины параболы

Чаще всего аргумент функции заменяется на квадратный трехчлен вида y = ax 2 + bx + c . Его график - стандартная парабола, в которой нас интересуют:

  • Ветви параболы - могут уходить вверх (при a > 0) или вниз (a < 0). Задают направление, в котором функция может принимать бесконечные значения;
  • Вершина параболы - точка экстремума квадратичной функции, в которой эта функция принимает свое наименьшее (для a > 0) или наибольшее (a < 0) значение.
  • Наибольший интерес представляет именно вершина параболы , абсцисса которой рассчитывается по формуле:

    Итак, мы нашли точку экстремума квадратичной функции. Но если исходная функция монотонна, для нее точка x 0 тоже будет точкой экстремума. Таким образом, сформулируем ключевое правило:

    Точки экстремума квадратного трехчлена и сложной функции, в которую он входит, совпадают. Поэтому можно искать x 0 для квадратного трехчлена, а на функцию - забить.

    Из приведенных рассуждений остается непонятным, какую именно точку мы получаем: максимума или минимума. Однако задачи специально составляются так, что это не имеет значения. Судите сами:

  • Отрезок в условии задачи отсутствует. Следовательно, вычислять f (a ) и f (b ) не требуется. Остается рассмотреть лишь точки экстремума;
  • Но таких точек всего одна - это вершина параболы x 0 , координаты которой вычисляются буквально устно и без всяких производных.
  • Таким образом, решение задачи резко упрощается и сводится всего к двум шагам:

  • Выписать уравнение параболы y = ax 2 + bx + c и найти ее вершину по формуле: x 0 = −b /2a ;
  • Найти значение исходной функции в этой точке: f (x 0). Если никаких дополнительных условий нет, это и будет ответом.
  • На первый взгляд, этот алгоритм и его обоснование могут показаться сложными. Я намеренно не выкладываю «голую» схему решения, поскольку бездумное применение таких правил чревато ошибками.

    Рассмотрим настоящие задачи из пробного ЕГЭ по математике - именно там данный прием встречается чаще всего. Заодно убедимся, что таким образом многие задачи B15 становятся почти устными.

    Под корнем стоит квадратичная функция y = x 2 + 6x + 13. График этой функции − парабола ветвями вверх, поскольку коэффициент a = 1 > 0.

    Вершина параболы:

    x 0 = −b /(2a ) = −6/(2 · 1) = −6/2 = −3

    Поскольку ветви параболы направлены вверх, в точке x 0 = −3 функция y = x 2 + 6x + 13 принимает наименьшее значение.

    Корень монотонно возрастает, значит x 0 - точка минимума всей функции. Имеем:

    Задача. Найдите наименьшее значение функции:

    y = log 2 (x 2 + 2x + 9)

    Под логарифмом снова квадратичная функция: y = x 2 + 2x + 9. График - парабола ветвями вверх, т.к. a = 1 > 0.

    Вершина параболы:

    x 0 = −b /(2a ) = −2/(2 · 1) = −2/2 = −1

    Итак, в точке x 0 = −1 квадратичная функция принимает наименьшее значение. Но функция y = log 2 x - монотонная, поэтому:

    y min = y (−1) = log 2 ((−1) 2 + 2 · (−1) + 9) = ... = log 2 8 = 3

    В показателе стоит квадратичная функция y = 1 − 4x − x 2 . Перепишем ее в нормальном виде: y = −x 2 − 4x + 1.

    Очевидно, что график этой функции - парабола, ветви вниз (a = −1 < 0). Поэтому вершина будет точкой максимума:

    x 0 = −b /(2a ) = −(−4)/(2 · (−1)) = 4/(−2) = −2

    Исходная функция - показательная, она монотонна, поэтому наибольшее значение будет в найденной точке x 0 = −2:

    Внимательный читатель наверняка заметит, что мы не выписывали область допустимых значений корня и логарифма. Но этого и не требовалось: внутри стоят функции, значения которых всегда положительны.

    Следствия из области определения функции

    Иногда для решения задачи B15 недостаточно просто найти вершину параболы. Искомое значение может лежать на конце отрезка , а вовсе не в точке экстремума. Если в задаче вообще не указан отрезок, смотрим на область допустимых значений исходной функции. А именно:

    Обратите внимание еще раз: ноль вполне может быть под корнем, но в логарифме или знаменателе дроби - никогда. Посмотрим, как это работает на конкретных примерах:

    Задача. Найдите наибольшее значение функции:

    Под корнем снова квадратичная функция: y = 3 − 2x − x 2 . Ее график - парабола, но ветви вниз, поскольку a = −1 < 0. Значит, парабола уходит на минус бесконечность, что недопустимо, поскольку арифметический квадратный корень из отрицательного числа не существует.

    Выписываем область допустимых значений (ОДЗ):

    3 − 2x − x 2 ≥ 0 ⇒ x 2 + 2x − 3 ≤ 0 ⇒ (x + 3)(x − 1) ≤ 0 ⇒ x ∈ [−3; 1]

    Теперь найдем вершину параболы:

    x 0 = −b /(2a ) = −(−2)/(2 · (−1)) = 2/(−2) = −1

    Точка x 0 = −1 принадлежит отрезку ОДЗ - и это хорошо. Теперь считаем значение функции в точке x 0 , а также на концах ОДЗ:

    y (−3) = y (1) = 0

    Итак, получили числа 2 и 0. Нас просят найти наибольшее - это число 2.

    Задача. Найдите наименьшее значение функции:

    y = log 0,5 (6x − x 2 − 5)

    Внутри логарифма стоит квадратичная функция y = 6x − x 2 − 5. Это парабола ветвями вниз, но в логарифме не может быть отрицательных чисел, поэтому выписываем ОДЗ:

    6x − x 2 − 5 > 0 ⇒ x 2 − 6x + 5 < 0 ⇒ (x − 1)(x − 5) < 0 ⇒ x ∈ (1; 5)

    Обратите внимание: неравенство строгое, поэтому концы не принадлежат ОДЗ. Этим логарифм отличается от корня, где концы отрезка нас вполне устраивают.

    Ищем вершину параболы:

    x 0 = −b /(2a ) = −6/(2 · (−1)) = −6/(−2) = 3

    Вершина параболы подходит по ОДЗ: x 0 = 3 ∈ (1; 5). Но поскольку концы отрезка нас не интересуют, считаем значение функции только в точке x 0:

    y min = y (3) = log 0,5 (6 · 3 − 3 2 − 5) = log 0,5 (18 − 9 − 5) = log 0,5 4 = −2

    gastroguru © 2017