Вычисление производных элементарных функций по определению. Производная функции. Подробная теория с примерами. Производная обратной функции

Формулы 3 и 5 докажите самостоятельно.


ОСНОВНЫЕ ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ

Применяя общий способ нахождения производной с помощью предела можно получить простейшие формулы дифференцирования. Пусть u=u(x),v=v(x) – две дифференцируемые функции от переменной x .

Формулы 1 и 2 докажите самостоятельно.

Доказательство формулы 3 .

Пусть y = u(x) + v(x). Для значения аргумента x x имеем y (x x )=u (x x ) + v (x x ).

Δy =y (x x ) – y(x) = u(x x) + v(x x) u(x) v(x) = Δu v .

Следовательно,

Доказательство формулы 4 .

Пусть y=u(x)·v(x). Тогда y (x x )=u (x x v (x x ), поэтому

Δy =u (x x v (x x ) – u (x v (x ).

Заметим, что поскольку каждая из функций u и v дифференцируема в точке x , то они непрерывны в этой точке, а значит u (x x )→u(x), v (x x )→v(x) , при Δx →0.

Поэтому можем записать

На основании этого свойства можно получить правило дифференцирования произведения любого числа функций.

Пусть, например, y=u·v·w. Тогда,

y " = u "·(w) + u ·(v ·w) " = u v ·w + u ·(v "·w +v ·w ") = u v ·w + u ·v "·w + u·v ·w ".

Доказательство формулы 5 .

Пусть . Тогда

При доказательстве воспользовались тем, что v(x+ Δx) v(x) при Δx →0.

Примеры .

ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ

Пусть y = f(u), а u = u (x ). Получаем функцию y , зависящую от аргумента x : y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией .

Областью определения функции y = f(u(x)) является либо вся область определения функции u =u (x ) либо та ее часть, в которой определяются значения u , не выходящие из области определения функции y = f(u) .

Операция "функция от функции" может проводиться не один раз, а любое число раз.

Установим правило дифференцирования сложной функции.

Теорема. Если функция u = u (x ) имеет в некоторой точке x 0 производную и принимает в этой точке значение u 0 = u (x 0 ), а функция y= f(u) имеет в точке u 0 производную y " u = f "(u 0 ), то сложная функция y = f(u(x)) в указанной точке x 0 тоже имеет производную, которая равна y " x = f "(u 0 u "(x 0 ), где вместо u должно быть подставлено выражение u = u (x ).

Таким образом, производная сложной функции равна произведению производной данной функции по промежуточному аргументу u на производную промежуточного аргумента по x .

Доказательство . При фиксированном значении х 0 будем иметь u 0 =u (x 0), у 0 =f(u 0 ). Для нового значения аргумента x 0 x :

Δu = u (x 0 + Δx ) – u (x 0), Δy =f (u 0 u ) – f (u 0 ).

Т.к. u – дифференцируема в точке x 0 , то u – непрерывна в этой точке. Поэтому при Δx →0 Δu →0. Аналогично при Δu →0 Δy →0.

По условию . Из этого соотношения, пользуясь определением предела, получаем (при Δu →0)

где α→0 при Δu →0, а, следовательно, и при Δx →0.

Перепишем это равенство в виде:

Δy = y " u Δu +α·Δu .

Полученное равенство справедливо и при Δu =0 при произвольном α, так как оно превращается в тождество 0=0. При Δu =0 будем полагать α=0. Разделим все члены полученного равенства на Δx

.

По условию . Поэтому, переходя к пределу при Δx →0, получим y " x = y " u ·u " x . Теорема доказана.

Итак, чтобы продифференцировать сложную функцию y = f(u(x)), нужно взять производную от "внешней" функции f , рассматривая ее аргумент просто как переменную, и умножить на производную от "внутренней" функции по независимой переменной.

Если функцию y=f(x) можно представить в виде y=f(u), u=u(v), v=v(x), то нахождение производной y " x осуществляется последовательным применением предыдущей теоремы.

По доказанному правилу имеем y " x = y " u ·u " x . Применяя эту же теорему для u " x получаем , т.е.

y " x = y " x · u " v · v " x = f " u (u u " v (v v " x (x ).

Примеры.

ПОНЯТИЕ ОБРАТНОЙ ФУНКЦИИ

Начнем с примера. Рассмотрим функцию y= x 3 . Будем рассматривать равенство y = x 3 как уравнение относительно x . Это уравнение для каждого значения у определяет единственное значение x : . Геометрически это значит, что всякая прямая параллельная оси Ox пересекает график функции y= x 3 только в одной точке. Поэтому мы можем рассматривать x как функцию от y . Функция называется обратной по отношению к функции y= x 3 .

Прежде чем перейти к общему случаю, введем определения.

Функция y = f(x) называется возрастающей на некотором отрезке, если большему значению аргумента x из этого отрезка соответствует большее значение функции, т.е. если x 2 >x 1 , то f(x 2 ) > f(x 1 ).

Аналогично функция называется убывающей , если меньшему значению аргумента соответствует большее значение функции, т.е. еслих 2 < х 1 , то f(x 2 ) > f(х 1 ).

Итак, пусть дана возрастающая или убывающая функция y= f(x) , определенная на некотором отрезке [a ; b ]. Для определенности будем рассматривать возрастающую функцию (для убывающей все аналогично).

Рассмотрим два различных значения х 1 и х 2 . Пусть y 1 =f(x 1 ), y 2 =f(x 2 ). Из определения возрастающей функции следует, что если x 1 <x 2 , то у 1 <у 2 . Следовательно, двум различным значениям х 1 и х 2 соответствуют два различных значения функции у 1 и у 2 . Справедливо и обратное, т.е. если у 1 <у 2 , то из определения возрастающей функции следует, чтоx 1 <x 2 . Т.е. вновь двум различным значениям у 1 и у 2 соответствуют два различных значенияx 1 и x 2 . Т.о., между значениями x и соответствующими им значениями y устанавливается взаимно однозначное соответствие, т.е. уравнение y=f(x) для каждого y (взятого из области значений функции y=f(x)) определяет единственное значение x , и можно сказать, что x есть некоторая функция аргумента y : x= g(у) .

Эта функция называется обратной для функции y=f(x) . Очевидно, что и функция y=f(x) является обратной для функции x=g(у) .

Заметим, что обратная функция x=g(y) находится путем решения уравнения y=f(x) относительно х .

Пример. Пусть дана функция y = e x . Эта функция возрастает при –∞ < x <+∞. Она имеет обратную функцию x = lny . Область определения обратной функции 0 < y < + ∞.

Сделаем несколько замечаний.

Замечание 1. Если возрастающая (или убывающая) функция y=f(x) непрерывна на отрезке [a ; b ], причем f(a)=c, f(b)=d , то обратная функция определена и непрерывна на отрезке [c ; d ].

Замечание 2. Если функция y=f(x) не является ни возрастающей, ни убывающей на некотором интервале, то она может иметь несколько обратных функций.

Пример. Функция y=x 2 определена при –∞<x <+∞. Она не является ни возрастающей, ни убывающей и не имеет обратной функции. Однако, если мы рассмотриминтервал 0≤x <+∞, то здесь функция является возрастающей и обратной для нее будет . На интервале – ∞ <x ≤ 0 функция – убывает и обратная для нее .

Замечание 3. Если функции y=f(x) и x=g(y) являются взаимно обратными, то они выражают одну и ту же связь между переменными x и y . Поэтому графикомих является одна и та же кривая. Но если аргумент обратной функции мы обозначим снова через x , а функцию через y и построим их в одной системе координат, то получим уже два различных графика. Легко заметить, что графики будут симметричны относительно биссектрисы 1-го координатного угла.


ТЕОРЕМА О ПРОИЗВОДНОЙ ОБРАТНОЙ ФУНКЦИИ

Докажем теорему, позволяющую находить производную функции y=f(x) , зная производную обратной функции.

Теорема. Если для функции y=f(x) существует обратная функция x=g(y ), которая в некоторой точке у 0 имеет производную g "(v 0 ), отличную от нуля, то в соответствующей точке x 0 =g (x 0 ) функция y=f(x) имеет производную f "(x 0 ), равную , т.е. справедлива формула.

Доказательство . Т.к. x=g(y) дифференцируема в точке y 0 , то x=g(y) непрерывна в этой точке, поэтому функция y=f(x) непрерывна в точке x 0 =g (y 0 ). Следовательно, при Δx →0 Δy →0.

Покажем, что .

Пусть . Тогда по свойству предела . Перейдем в этом равенстве к пределу при Δy →0. Тогда Δx →0 и α(Δx)→0, т.е. .

Следовательно,

,

что и требовалось доказать.

Эту формулу можно записать в виде .

Рассмотрим применение этой теоремы на примерах.

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

А проверить решение задачи на производную можно на .

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Проверить решение задачи на производную можно на калькуляторе производных онлайн .

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

Вычисление производной часто встречается в заданиях ЕГЭ. Данная страница содержит список формул для нахождения производных.

Правила дифференцирования

  1. (k⋅ f(x))′=k⋅ f ′(x).
  2. (f(x)+g(x))′=f′(x)+g′(x).
  3. (f(x)⋅ g(x))′=f′(x)⋅ g(x)+f(x)⋅ g′(x).
  4. Производная сложной функции. Если y=F(u), а u=u(x), то функция y=f(x)=F(u(x)) называется сложной функцией от x. Равна y′(x)=Fu′⋅ ux′.
  5. Производная неявной функции. Функция y=f(x) называется неявной функцией, заданной соотношением F(x,y)=0, если F(x,f(x))≡0.
  6. Производная обратной функции. Если g(f(x))=x, то функция g(x) называется обратной функцией для функции y=f(x).
  7. Производная параметрически заданной функции. Пусть x и y заданы как функции от переменной t: x=x(t), y=y(t). Говорят, что y=y(x) параметрически заданная функция на промежутке x∈ (a;b), если на этом промежутке уравнение x=x(t) можно выразить в виде t=t(x) и определить функцию y=y(t(x))=y(x).
  8. Производная степенно-показательной функции. Находится путем логарифмирования по основанию натурального логарифма.
Советуем сохранить ссылку, так как эта таблица может понадобиться еще много раз.

Приведем без доказательства формулы производных основных элементарных функций:

1. Степенная функция: (x n)` =nx n -1 .

2. Показательная функция: (a x)` =a x lna(в частности, (е x)` = е x).

3. Логарифмическая функция: (в частности, (lnx)` = 1/x).

4. Тригонометрические функции:

(cosх)` = -sinx

(tgх)` = 1/cos 2 x

(ctgх)` = -1/sin 2 x

5. Обратные тригонометрические функции:

Можно доказать, что для дифференцирования степенно-показательной функции необходимо дважды использовать формулу для производной сложной функции, а именно, дифференцировать ее и как сложную степенную функцию, и как сложную показательную, и сложить результаты: (f(x)  (x))` =(x)*f(x)  (x)-1 *f(x)` +f(x)  (x) *lnf(x)*(x)`.

Производные высших порядков

Поскольку производная функции сама является функцией, она тоже может иметь производную. Понятие производной, которое было рассмотрено выше, относится к производной первого порядка.

Производной n -го порядка называется производная от производной (n- 1)-го порядка. Например,f``(x) = (f`(x))` - производная второго порядка (или вторая производная),f```(x) = (f``(x))` - производная третьего порядка (или третья производная) и т.д. Иногда для обозначения производных более высокого порядка используются или римские арабские цифры в скобках, например,f (5) (x) илиf (V) (x) для производной пятого порядка.

Физический смысл производных высших порядков определяется так же, как и для первой производной: каждая из них представляет собой скорость изменения производной предыдущего порядка. Например, вторая производная представляет собой скорость изменения первой, т.е. скорость скорости. Для прямолинейного движения она означает ускорение точки в момент времени.

Эластичность функции

Эластичностью функции Е х (у)называется предел отношения относительного приращения функции у к относительному приращению аргумента х при последнем, стремящемся к нулю:
.

Эластичность функции показывает приближенно, на сколько процентов изменится функция у = f(x) при изменении независимой переменной х на 1%.

В экономическом смысле отличие этого показателя от производной в том, что производная имеет единицы измерения, и поэтому ее величина зависит от того, в каких единицах измеряются переменные. Например, если зависимость объема производства от времени выражается соответственно в тоннах и месяцах, то производная будет показывать предельное увеличения объема в тоннах за месяц; если же измерять эти показатели, допустим, в килограммах и днях, то и сама функция, и ее производная будут другими. Эластичность же является по сути своей величиной безразмерной (измеряется в процентах или долях) и поэтому не зависит от масштаба показателей.

Основные теоремы о дифференцируемых функциях и их приложения

Теорема Ферма . Если дифференцируемая на промежутке функция достигает наибольшего или наименьшего значения во внутренней точке этого промежутка, то производная функции в этой точке равна нулю.

Без доказательства.

Геометрический смысл теоремы Ферма состоит в том, что в точке наибольшего или наименьшего значения, достигаемого внутри промежутка, касательная к графику функции параллельна оси абсцисс (рисунок 3.3).

Теорема Ролля . Пусть функция у =f(x) удовлетворяет следующим условиям:

2) дифференцируема на интервале (а, b);

3) на концах отрезка принимает равные значения, т.е. f(a) =f(b).

Тогда внутри отрезка существует по крайней мере одна точка, в которой производная функции равна нулю.

Без доказательства.

Геометрический смысл теоремы Ролля заключается в том, что найдется хотя бы одна точка, в которой касательная к графику функции будет параллельна оси абсцисс (например, на рисунке 3.4 таких точек две).

Если f(a) =f(b) = 0, то теорему Ролля можно сформулировать по-другому: между двумя последовательными нулями дифференцируемой функции имеется хотя бы один нуль производной.

Теорема Ролля является частным случаем теоремы Лагранжа.

Теорема Лагранжа . Пусть функция у =f(х) удовлетворяет следующим условиям:

1) непрерывна на отрезке [а, b];

2) дифференцируема на интервале (а, b).

Тогда внутри отрезка существует по крайней мере одна такая точка с, в кдторой производная равна частному от деления приращения функций на приращение аргумента на этом отрезке:
.

Без доказательства.

Чтобы понять физический смысл теоремы Лагранжа, отметим, что
есть не что иное, как средняя скорость изменения функции на всем отрезке [а,b]. Таким образом, теорема утверждает, что внутри отрезка найдется хотя бы одна точка, в которой "мгновенная" скорость изменения функции равна средней скорости ее изменения на всем отрезке.

Геометрический смысл теоремы Лагранжа проиллюстрирован рисунком 3.5. Отметим, что выражение
представляет собой угловой коэффициент прямой, на которой лежит хорда АВ. Теорема утверждает, что на графике функции найдется хотя бы одна точка, в которой касательная к нему будет параллельна этой хорде (т.е. угловой коэффициент касательной – производная – будет таким же).

Следствие: если производная функции равна нулю на некотором промежутке, то функция тождественно постоянна на этом промежутке.

В самом деле, возьмем на этом промежутке промежуток . По теореме Лагранжа в этом промежутке найдется точка с, для которой
. Отсюда f(a) – f(x) = f `(с)(a – x) = 0; f(x) = f(a) = const.

Правило Лопиталя . Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле.

Иными словами, если имеется неопределенность вида
, то
.

Без доказательства.

Применение правила Лопиталя для нахождения пределов будет рассмотрено на практических занятиях.

Достаточное условие возрастания (убывания) функции . Если производная дифференцируемой функции положительна (отрицательна) внутри некоторого промежутка, то функция возрастает (убывает) на этом промежутке.

Доказательство. Рассмотрим два значения х 1 и х 2 из данного промежутка (пусть х 2 > х 1). По теореме Лагранда на [х 1 , х 2 ] существует точка с, в которой
. Отсюдаf(х 2) –f(x 1) =f`(с)(х 2 –x 1). Тогда приf`(с) > 0 левая часть неравенства положительна, т.е.f(х 2) >f(x 1), и функция является возрастающей. Приf`(с) < 0 левая часть неравенства отрицательна, т.е.f(х 2)

Теорема доказана.

Геометрическая интерпретация условия монотонности функции: если касательные к кривой в некотором промежутке направлены под острыми углами к оси абсцисс, то функция возрастает, а если под тупыми, то убывает (см. рисунок 3.6).

Замечание: необходимое условие монотонности более слабое. Если функция возрастает (убывает) на некотором промежутке, то производная неотрицательна (неположительна) на этом промежутке (т.е. в отдельных точках производная монотонной функции может равняться нулю).

gastroguru © 2017