Эндоплазматическая сеть. Мембранные органоиды клетки В рибосомах расположенных на гранулярных

Эндоплазматическую сеть (ЭПС), или эндоплазматический ретикулум (ЭПР) , удалось обнаружить только с появлением электронного микроскопа. ЭПС есть только в эукариотических клетках и представляет собой сложную систему мембран, образующих уплощенные полости и трубочки. Все вместе это выглядит как сеть. ЭПС относится к одномембранным органоидам клетки.

Мембраны ЭПС отходят от внешней мембраны ядра и по строению сходны с ней.

Эндоплазматическая сеть делится на гладкую (агранулярную) и шероховатую (гранулярную). Последняя усеяна прикрепленными к ней рибосомами (из-за этого и возникает «шероховатость»). Основная функция обоих типов связана с синтезом и транспортом веществ. Только шероховатая отвечает за белок, а гладкая - за углеводы и жиры.


По своему строению ЭПС представляет собой множество парных параллельных мембран, пронизывающих почти всю цитоплазму. Пара мембран образует пластинку (полость внутри имеет разную ширину и высоту), однако гладкая эндоплазматическая сеть в большей степени имеет трубчатое строение. Такие уплощенные мембранные мешочки называют цистернами ЭПС .

Рибосомы, расположенные на шероховатой ЭПС, синтезируют белки, которые поступают в каналы ЭПС , созревают (приобретают третичную структуру) там и транспортируются. У таких белков сначала синтезируется сигнальная последовательность (состоящая преимущественно из неполярных аминокислот), конфигурация которой соответствует специфическому рецептору ЭПС. В результате рибосома и эндоплазматическая сеть связываются. При этом рецептор образует канал для перехода синтезируемого белка в цистерны ЭПС.

После того, как белок оказывается в канале эндоплазматического ретикулума сигнальная последовательность от него отделяется. После этого он свертывается в свою третичную структуру. При транспортировке по ЭПС белок приобретает ряд других изменений (фосфорилирование, образование связи с углеводом, т. е. превращение в гликопротеин).

Большинство белков, оказавшихся в шероховатой ЭПС, далее попадают в аппарат (комплекс) Гольджи. Оттуда белки либо секретируются из клетки, либо поступают в другие органоиды (обычно лизосомы), либо откладываются как гранулы запасных веществ.

Следует иметь в виду, что не все белки клетки синтезируются на шероховатой ЭПС. Часть (обычно меньшая) синтезируется свободными рибосомами в гиалоплазме, такие белки используются самой клеткой. У них сигнальная последовательность не синтезируется за ненужностью.

Основной функцией гладкой эндоплазматической сети является синтез липидов (жиров). Например, ЭПС эпителия кишечника синтезирует их из жирных кислот и глицерола, всасывающихся из кишечника. Затем липиды попадают в комплекс Гольджи. Кроме клеток кишечника, гладкая ЭПС хорошо развита в клетках, секретирующих стероидные гормоны (стероиды относятся к липидам). Например, в клетках надпочечников, интерстициальных клетках семенников.

Синтез и транспорт белков, жиров и углеводов не единственные функции ЭПС. В печение эндоплазматический ретикулум участвует в процессах детоксикации. Особая форма гладкой ЭПС - саркоплазматический ретикулум – присутствует в мышечных клетках и обеспечивает сокращение за счет перекачки ионов кальция.

Структура, объем и функциональность эндоплазматической сети клетки не является постоянной на протяжении клеточного цикла, а подвержены тем или иным изменениям.

На гранулярной ЭПС находятся рибосомы, гладкая и промежуточная лишены их. Гранулярный ЭР в основном представлен цистернами , а гладкий и промежуточный - в основном каналами . Мембраны цистерн, каналов и пузырьков могут переходить друг в друга. ЭР содержит полужидкий матрикс, характеризующийся особым химическим составом.

Главная функция гранулярного (шероховатого) эндоплазматического ретикулума – синтез белков.

Гранулярный ЭПР представлен системой плоских цистерн. На их мембране со стороны цитозоля расположены рибосомы, объединенные в полисомы. На рибосомах гранулярного ЭПР происходит синтез белков, которые в зависимости от их конечного назначения могут быть разделены на три группы:

  • белки, предназначенные для секреции,
  • белки внутренней фазы ЭПР, аппарата Гольджи, лизосом,
  • мембранные белки, предназначенные для ЭПР, аппарата Гольджи, лизосом, ядерной оболочки и плазмалеммы.

В ЭПР происходят начальные этапы сортировки синтезированных белков. Растворимые белки первых двух групп целиком поступают в цистерны ЭПР, который обеспечивает их обособления от цитозоля. Мембранные белки после синтеза остаются в составе мембраны ЭПР.

Сборка любого белка начинается на свободных рибосомах в цитозоле. В ЭПР поступают только те пептиды, у которых первым синтезируется специфический гидрофобный сигнальный пептид. Особая частица, распознающая сигнал (SRP) связывается с сигнальным пептидом, временно блокирует синтез белка и затем направляет рибосому к мембране эндоплазматического ретикулума, где SRP присоединяется к своему рецептору. Доставленная таким образом к ЭПР рибосома прикрепляется своей большой субъединицей к специальному белку-рецептору, который участвует в образовании канала. Частица, выполнившая свою задачу, покидает рибосому. Прекращается ее блокирующее действие, и синтез белка возобновляется.

Растущая белковая цепь поступает в ЭПР через канал в мембране. Пока белок в виде петли перетаскивается в полость ЭПР, его гидрофобный сигнальный пептид остается погруженным в мембрану. При синтезе растворимых белков сигнальный пептид отрезается, и белок высвобождается в полость ЭПР. Трансмембранные белки остаются заякоренными в билипидном слое с помощью неотрезанного сигнального пептида или за счет другого гидрофобного участка-сигнала окончания переноса (стоп-пептида). При чередовании в полипептиде сигналов начала переноса и окончания переноса белок будет пронизывать билипидный слой несколько раз.

Синтезированные в шероховатом ЭПР белки подвергаются обработке. Наряду с отрезанием сигнального пептида, важнейшим преобразованием является гликозилирование (соединение с олигосахаридом). Здесь же происходят начальные этапы преобразования олигосахаридов в гликопротеинах. В цистернах гранулярного ЭПР обеспечивается также и правильное сворачивание синтезированных белковых молекул (гидрофобные участки ориентированы внутрь). Это препятствует образованию агрегатов, выпадающих в осадок. В гранулярном ЭПР происходит сборка липопротеиновых мембран. Здесь синтезируются не только мембранные белки, но и липиды мембран.

Ферментативный синтез фосфолипидов происходит на обращенной к цитозолю стороне мембраны. Специальные белки-транслокаторы фосфолипидов могут переносить часть липидов во внутренний слой, создавая тем самым асимметрию билипидного слоя. ЭПР поставляет с помощью транспортных пузырьков мембранные белки и липиды аппарату Гольджи, который в свою очередь с помощью транспортных пузырьков снабжает ими плазмалемму и мембраны лизосом.

К органеллам данной группы относятся , рибосомы, комплекс Гольджи, лизосомы, пероксисомы. Они осуществляют синтез органических соединений, их транспорт в процессе химической доработки из одного участка канальцевой сети в другой, накопление, перемещение, упаковку и экзоцитоз готовых продуктов синтеза.

Эндоплазматическая сеть и рибосомы . Эндоплазматическая сеть представлена канальцами и цистернами, которые анастомозируют и формируют в гиалоплазме трехмерную сеть. В состав сети входят гранулярные (содержащие на внешних поверхностях мембран рибосомы) и агранулярные (без рибосом) участки.

Рибосомы синтезируют все разнообразие клеточных белков. На светооптическом уровне рибосомы неразличимы, об их количестве в клетке можно судить по интенсивности окраски цитоплазмы общегистологическими (базофилия) или специальными гистохимическими реактивами и флюорохромами, маркирующими РНК. На субмикроскопическом уровне рибосомы выглядят как осмиофильные черные точки (диаметром около 20-25 нм), а их рабочие комплексы - полисомы - как группы, или розетки, осмиофильных точек.

Компоненты рибосом создаются в разных участках клетки: рибосомальные РНК синтезируются в ядрышке; рибосомальные белки - в цитоплазме. Последние поступают в ядро, где комплексируются с молекулами РНК и объединяются в рибосомальные субъединицы. Затем субъединицы РНК транспортируются из ядра через поры и находятся в цитоплазме либо в диссоциированном (неактивном), либо ассоциированном друг с другом (активном) состоянии. Работающие органеллы состоят из двух ассоциированных (малой и большой) субъединиц, которые удерживаются в обратимо связанном состоянии с помощью катионов магния. Большую субъединицу рибосом образуют разные молекулы РНК, имеющие сложную вторичную и третичную структуру, в комплексе с рибосомальными протеинами. Большая субъединица значительно крупнее малой и имеет форму полушара. Малая субъединица выглядит в виде маленькой шапочки. При ассоциации субъединиц в рибосому происходит закономерное взаимодействие их поверхностей.

Между субъединицами работающей рибосомы имеет место строгое "разделение труда" - малая субъединица ответственна за связывание информационной РНК, большая - ведает образованием полипептидной цепи. В клетке нефункционирующие рибосомы находятся в диссоциированном состоянии, в связи с чем получают возможность постоянно обмениваться субъединицами и постоянно обновляться. В рабочем режиме рибосомы (от 3 до 20-30 в группе) образуют стабильный комплекс - полисому, в котором они связаны нитью информационной РНК.

О степени развития в клетке можно судить по базофилии цитоплазмы, обусловленной присутствием большого количества рибосом; агранулярные участки эндоплазматической сети на светооптическом уровне не обнаруживаются. В большинстве клеток преобладает гранулярная сеть, и оба вида сети имеют диффузную организацию - их элементы располагаются в гиалоплазме свободно, без какой-либо упорядоченности. Синтез белка в гранулярной сети происходит на рибосомах и полисомах, а ее каналы и цистерны являются вместилищем и транспортными магистралями для перемещения белка в коплекс Гольджи для доработки.

Ширина и количество канальцев и цистерн сети в клетках варьируют в зависимости от их функционального состояния - при повышении функциональных нагрузок на клетку канальцы и цистерны сети становятся множественными и значительно расширяются. Канальцы эндоплазматической сети непосредственно связаны с перинуклеарным пространством клетки.

Значение гранулярной эндоплазматической сети состоит в синтезе мембранных белков и белков, предназначенных "на экспорт" и необходимых другим клеткам, либо используемых во внеклеточных физиологических реакциях. Этот вид сети присутствует во всех клетках организма человека (кроме зрелых спермиев), однако наиболее развит в тех клетках, которые специализированы на синтезе больших количеств белковых молекул. Таких видов клеток в организме человека сравнительно немного. Примером являются плазмоциты, синтезирующие антитела (или иммуноглобулины); клетки поджелудочной железы, вырабатывающие комплекс белковых пищеварительных ферментов (панкреатический сок); гепатоциты, синтезирующие широкий спектр белков плазмы крови, свертывающей и противосвертывающей систем, а также некоторые другие клетки. В этих клетках канальцы сети располагаются упорядоченно (в некоторых случаях - строго параллельно) в виде так называемой эргастоплазмы.

В малодифференцированных и неспециализированных клетках гранулярная эндоплазматическая сеть , как правило, слабо развита, в структуре клеток преобладают свободные поли- и рибосомы, обеспечивающие синтез белков, необходимых клетке для роста и дифференцировки.

Агранулярная эндоплазматическая сеть имеет вид коротких канальцев и пузырьков (везикул), которые диффузно располагаются по всей гиалоштзме.В большинстве клеток элементы агранулярной сети, как правило, немногочисленны. В клетках, вырабатывающих стероидные гормоны (клетки надпочечников, половых желез), агранулярная сеть хорошо развита и ее многочисленные пузырьки занимают большие площади, либо образуют муфты вокруг липидных включений - предшественников стероидных гормонов. В мембранах сети находятся ферменты стероидогенеза.

Помимо стероидогенеза , она участвует в синтезе и метаболизме липидов, полисахаров, триглицеридов, процессе детоксикации продуктов метаболизма лекарственных препаратов и эндогенных клеточных ядов. В канальцах агранулярной сети депонируются большие запасы катионов кальция.

Строение эндоплазматической сети

Определение 1

Эндоплазматическая сеть (ЭПС, эндоплазматический ретикулум) – сложная ультрамикроскопическая, очень разветвлённая, взаимосвязанная система мембран, которая более или менее равномерно пронизывает массу цитоплазмы всех эукариотических клеток.

ЭПС – мембранная органелла, состоящая из плоских мембранных мешочков – цистерн, каналов и трубочек. Благодаря такому строению эндоплазматическая сеть значительно увеличивает площадь внутренней поверхности клетки и делит клетку на секции. Внутри она заполнена матриксом (умеренно плотный рыхлый материал (продукт синтеза)). Содержание различных химических веществ в секциях неодинаково, потому в клетке как одновременно, так и в определённой последовательности могут происходить различные химические реакции в незначительном объёме клетки. Эндоплазматическая сеть открывается в перинуклеарное пространство (полость между двумя мембранами кариолемы).

Мембрана эндоплазматической сети состоит из белков и липидов (в основном фосфолипидов), а так же ферментов: аденозинтрифосфатазы и ферментов синтеза мембранных липидов.

Различают два вида эндоплазматической сети:

  • Гладкую (агранулярную, аЭС), представленную трубочками, которые анастамозируют между собой и не имеют на поверхности рибосом;
  • Шероховатую (гранулярную, грЭС), состоящую так же из соединённых между собой цистерн, но они покрыты рибосомами.

Замечание 1

Иногда выделяют ещё переходящую, или транзиторную (тЭС) эндоплазматическую сеть, которая находится в участке перехода одной разновидности ЭС в другую.

Гранулярная ЭС свойственна всем клеткам (кроме сперматозоидов), но степень её развития разная и зависит от специализации клетки.

Сильно развита грЭС эпителиальных железистых клеток (поджелудочной железы, вырабатывающих пищеварительные ферменты, печени – синтезирующих альбумины сыворотки крови), фибробластов (клеток соединительной ткани, продуцирующих белок коллаген), плазматических клеток (продуцирование иммуноглобулинов).

Агранулярная ЭС преобладает в клетках надпочечников (синтез стероидных гормонов), в клетках мышц (обмен кальция), в клетках фундальных желез желудка (выделение ионов хлора).

Другим видом мембран ЭПС являются разветвлённые мембранные трубочки, содержащие внутри большое количество специфических ферментов, и везикулы – маленькие, окружённые мембраной пузырьки, в основном находящиеся рядом с трубочками и цистернами. Они обеспечивают перенесение тех веществ, которые синтезируются.

Функции ЭПС

Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.

Замечание 2

Функции обоих типов ЭПС связаны с синтезом и транспортом веществ. Эндоплазматическая сеть является универсальной транспортной системой.

Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:

  • разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
  • трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
  • синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
  • благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.

Кроме того, каждой из разновидностей сети свойственны свои специфические функции.

Функции гладкой (агранулярной) эндоплазматической сети

Агранулярная эндоплазматическая сеть, кроме названных функций, общих для обоих видов ЭС, выполняет ещё и свойственные только для неё функции:

  • депо кальция . Во многих клетках (в скелетных мышцах, в сердце, яйцеклетках, нейронах) существуют механизмы, способные изменять концентрацию ионов кальция. Поперечнополосатая мышечная ткань содержит специализированную эндоплазматическую сеть, называемую саркоплазматическим ретикулумом. Это резервуар кальций-ионов, а мембраны этой сети содержат мощные кальциевые помпы, способные выбрасывать в цитоплазму большое количество кальция или транспортировать его в полости каналов сети за сотые доли секунды;
  • синтез липидов , веществ типа холестерина и стероидных гормонов. Стероидные гормоны синтезируются в основном в эндокринных клетках половых желез и надпочечников, в клетках почек и печени. Клетки кишечника синтезируют липиды, которые выводятся в лимфу, а потом в кровь;
  • детоксикационная функция – обезвреживание єкзогенных и эндогенных токсинов;

    Пример 1

    В почечных клетках (гепатоцитах) содержатся ферменты оксидазы, способные разрушать фенобарбитал.

    ферменты органеллы берут участие в синтезе гликогена (в клетках печени).

Функции шероховатой (гранулярной) эндоплазматической сети

Для гранулярной эндоплазматической сети, кроме перечисленных общих функций, свойственны ещё и специальные:

  • синтез белков на грЭС имеет некоторые особенности. Начинается он на свободных полисомах, которые в дальнейшем связываются с мебранами ЭС.
  • Гранулярная эндоплазматическая сеть синтезирует: все белки клеточной мембраны (кроме некоторых гидрофобных белков, белков внутренних мембран митохондрий и хлоропластов), специфические белки внутренней фазы мембранных органелл, а так же секреторные белки, которые транспортируются по клетке и поступают во внеклеточное пространство.
  • пострансляционная модификация белков : гидроксилирование, сульфатирование, фосфориллирование. Важным процессом является гликозилирование, которое происходит под действием связанного с мембраной фермента гликозилтранферазы. Гликозилирование происходит перед секрецией или транспортом веществ к некоторым участкам клетки (комплексу Гольджи, лизосомам или плазмолемме).
  • транспорт веществ по внутримембранной части сети. Синтезированные белки по промежуткам ЭС перемещаются к комплексу Гольджи, который выводит вещества из клетки.
  • благодаря участию гранулярной эндоплазматической сети образуется комплекс Гольджи.

Функции зернистой эндоплазматической сети связаны с транспортом белков, которые синтезируются в рибосомах и расположены на её поверхности. Синтезированные белки поступают внутрь ЭПС, скручиваются и приобретают третичную структуру.

Белок, который транспортируется к цистернам, значительно изменяется на своём пути. Он может, например, фосфорилироваться или превращаться в гликопротеид. Обычный путь для белка – это путь через зернистую ЭПС в аппарат Гольджи, откуда он или выходит наружу клетки, или поступает к другим органеллам той же клетки, например, к лизосомам), или откладывается в виде запасных гранул.

В клетках печени как зернистая, так и незернистая эндоплазматическая сетка берут участие в процессах детоксикации ядовитых веществ, которые потом выводятся из клетки.

Как и внешняя плазматическая мембрана, эндоплазматическая сетка имеет избирательную проницаемость, вследствие чего концентрация веществ внутри и снаружи каналов сетки неодинакова. Это имеет значение для функции клетки.

Пример 2

В эндоплазматической сетке мышечных клеток больше ионов кальция, чем в её цитоплазме. Выходя из каналов эндоплазматической сетки, ионы кальция запускают процесс сокращения мышечных волокон.

Образование эндоплазматической сети

Липидные компоненты мембран эндоплазматической сети синтезируются ферментами самой сети, белковый – поступает из рибосом, расположенных на её мембранах. В гладкой (агранулярной) эндоплазматической сети нет собственных факторов синтеза белка, потому считается, что эта органелла образуется в результате потери рибосом гранулярной эндоплазматической сетью.

gastroguru © 2017