Устойчивость систем автоматического управления (сау). Определение устойчивости систем автоматического управления промышленными роботами называются уравнениями невозмущенного движения

Устойчивость САУ, общие понятия устойчивости

Наименование параметра Значение
Тема статьи: Устойчивость САУ, общие понятия устойчивости
Рубрика (тематическая категория) Математика

Устойчивость системы автоматического управления является одной из важнейших характеристик системы, т.к. от нее зависит работоспособность системы. Система, у которой отсутствует устойчивость, не может качественно решать задачу управления. Отсутствие устойчивости также может привести к разрушению самой системы в процессе управления или разрушению объекта управления, в связи с этим использование неустойчивых систем нецелœесообразно.

Устойчивость системы автоматического управления - это свойство системы воз-

вращаться в исходное состояние равновесия после прекращения воздействия, выведшего систему состояния первоначального равновесия.

Примером устойчивых и неустойчивых систем могут служить системы из шарика, расположенного на вогнутой и выпуклой поверхности, представленные на рисунке 60.

Рис.60. Примеры систем: а) устойчивой; б) неустойчивой

На рисунке 60а шарик, расположенный на вогнутой поверхности и смещенный в сторону определœенным усилием, после окончания внешнего воздействия возвратится в положение первоначального равновесия. При отсутствии трения о поверхность или его минимальном значении шарик будет совершать непродолжительные колебания около положения равновесия до возвращения в первоначальное положение равновесия (кривая 1- затухающий колебательный процесс). При большом трении шарик возвратится в положение первоначального равновесия без колебаний (кривая 2 - апериодический процесс). При очень большом значении трения шарик может не вернуться в положение первоначального равновесия (кривая 3), но возвратится в область, близкую к положению равновесия. В рассмотренном случае налицо наличие устойчивой системы. В устойчивых САУ возникают подобные переходные процессы (затухающие колебательные и апериодические).

На рисунке 60б шарик, расположенный на выпуклой поверхности и смещенный в сторону определœенным усилием, не возвратится в положение первоначального равновесия (кривая 4), в связи с этим система является неустойчивой. В неустойчивых системах возникают переходные процессы виде расходящихся колебаний (кривая 5) или апериодические (кривая 4).

Неустойчивость САУ, как правило, возникает из-за очень сильного действия обратной связи. Причинами динамической неустойчивости обычно являются значительные инœерционные характеристики звеньев замкнутой системы, из-за которых сигнал обратной связи в режиме колебаний так отстает от входного сигнала, что оказывается с ним в фазе. Получается, что характер действия отрицательной обратной связи приобретает характер

положительной.

Составим математическое описание устойчивости и неустойчивости. Так как устойчивость системы зависит только от характера ее свободного движения, то данное свободное движение системы можно описать однородным дифференциальным уравнением:

характеристическое уравнение, которого будет представлено следующим выражением:

Общее решение однородного дифференциального уравнения (2.19.) представим в следующем виде:

где C k – постоянные, зависящие от начальных условий, p k – корни характеристического уравнения.

Корни характеристического уравнения бывают комплексными (p k = α k ± jβ k ), действительными (p k = α k ) или мнимыми (p k = jβ k ). Комплексные корни всœегда попарно сопряжены между собой, ᴛ.ᴇ. если имеется корень уравнения с положительной мнимой частью, то обязательно будет существовать корень с такой же по модулю, но отрицательной мнимой частью. y(t) при t из (2.21.) будет стремиться к нулю лишь тогда, когда каждое слагаемое С к е p k t → 0. Характер данной функции будет зависеть от вида корня. Возможные случаи расположения корней p k на комплексной плоскости и соответствующие им функции y(t) = С к е p k t представлены на рисунке 61. Вид функций показан внутри эллипсов.

Рис.61. Влияние расположения корней характеристического уравнения на

составляющие свободного движения системы

На рисунке 61 видно, что если каждому действительному корню p k = α k для выражения (2.21.) будет соответствовать слагаемое:

y к (t) = С к е α k t (2.22.)

тогда приα к < 0 (корень p 1) функция при t → ∞ будет стремиться к нулю, при α к > 0 (корень p 3 ) функция будет неограниченно возрастать, а при α к = 0 (корень p 2)функция будет оставаться постоянной.

В случае если характеристическое уравнение будет иметь комплексные корни, то каждой паре сопряженных комплексных корней p k, k+1 = α k ± jβ k , будут соответствовать два слагаемых, которые можно объединить и представить в виде следующего выражения:

Данная функция представляет собой синусоиду с изменяющейся по экспоненте амплитудой и частотой β k . При отрицательной действительной части двух комплексных корней α к, к+1 < 0 , (корни p 4 и p 5 )колебательная составляющая функции будет затухать, а при положительной действительной части α к, к+1 > 0 , (корни p 8 и p 9 ) амплитуда колебаний будет увеличиваться неограниченно. При отсутствии действительной части комплексных корней α к, к+1 = 0 (корни p 6 и p 7 ), ᴛ.ᴇ. наличии только мнимых корней, функция будет представлять собой незатухающую синусоиду с частотой β k .

Исходя из определœения устойчивости, в случае если первоначальное положение равновесия принимается за ноль, то у устойчивых систем величина выходного параметра с течением времени должна стремиться к нулю, ᴛ.ᴇ. система сама возвратится в положение равновесия. Необходимым и достаточным условием этого является, чтобы всœе слагаемые решения дифференциального уравнения (2.21.) с течением времени стремились к нулю, что должна быть достигнуто при отрицательных действительных корнях уравнения, а комплексные корни должны иметь отрицательную действительную часть. Существование хотя бы одного положительного действительного корня или пары комплексных корней с положительной действительной частью приведет к тому, что величина выходного параметра системы не возвратится к первоначальному значению, ᴛ.ᴇ. система будет неустойчивой.

Анализируя местоположение корней характеристического уравнения на комплексной плоскости, представленное на рисунке 62, можно заметить, что САУ является устойчивой, в случае если всœе корни характеристического уравнения находятся в левой полуплоскости и всœе они являются действительными отрицательными или комплексными с отрицательной действительной частью. Наличие хотя бы одного корня в правой полуплоскости будет характеризовать неустойчивость системы.

Устойчивость системы является внутренним свойством системы, зависящим только от вида корней характеристического уравнения, описывающего свойства системы, и не зависящим от внешнего воздействия. Необходимым и достаточным условием устойчивости системы является положение всœех корней уравнения в левой (отрицательной) полуплоскости.

Положительную и отрицательную полуплоскости, в которых находятся положительные или отрицательные корни характеристического уравнения, обеспечивающие устойчивость или неустойчивость системы, разделяет мнимая ось ± . Данная ось является границей устойчивости, в связи с этим если у характеристического уравнения есть одна пара чисто мнимых корней p k, k+1 jβ k , а другие корни находятсяв отрицательной полуплоскости, то система характеризуется наличием незатухающих колебаний с частотой ω = β к. Принято считать, что в таком случае система находится на колебательной границе устойчивости .

Точка β = 0 на мнимой оси соответствует нулевому корню. Считается, что уравнение, имеющее один нулевой корень, находится на апериодической границе устойчивости , а при наличии двух нулевых корней система неустойчива.

Рис.62. Расположение корней характеристического уравнения устойчивой системы на

комплексной плоскости

Не стоит забывать, что уравнения почти всœех реальных САУ не являются линœейными, а приведены к линœейным уравнениям с помощью линœеаризации, в связи с этим допущения, сделанные при линœеаризации, могут повлиять на правильность определœения устойчивости системы.

А. М. Ляпунов в 1892 ᴦ. в своей работе ʼʼОбщая задача об устойчивости движенияʼʼ привел доказательство теоремы, в которой были сделаны следующие выводы для линœеаризованных уравнений:

1. В случае если всœе действительные корни характеристического уравнения системы являются отрицательными, то система считается устойчивой.

2. В случае если хотя бы один действительный корень характеристического уравнения системы положительный, то система считается неустойчивой.

3. В случае если характеристическое уравнение линœеаризованной системы имеет хотя бы один нулевой корень или одну пару мнимых корней, то нельзя судить об устойчивости реальной системы по линœеаризованному уравнению.

Следовательно, вывод об устойчивости реальных систем крайне важно делать на базе анализа исходного нелинœейного уравнения и для определœения неустойчивости или устойчивости системы будет достаточно выявить положительность (отрицательность) действительных корней характеристического уравнения.

Критериями устойчивости называют определœенные правила, по которым в теории автоматического управления определяют знаки корней характеристического уравнения, не решая его. Различают алгебраические и частотные критерии устойчивости.

Алгебраическими критериями устойчивости системыназывают крайне важно е и достаточное условие отрицательности корней при определœенных значениях коэффициентов в характеристическом уравнении.

Частотными критериями устойчивости системы установлена зависимость устойчивости системы от формы частотных характеристик системы.

Устойчивость САУ, общие понятия устойчивости - понятие и виды. Классификация и особенности категории "Устойчивость САУ, общие понятия устойчивости" 2017, 2018.

PAGE \* MERGEFORMAT 14

Лекция №4

Устойчивость САУ

Свойство системы приходить в исходное состояние после снятия возмущения называется устойчивостью.

Определение.

Кривые 1 и 2 характеризуют устойчивую систему, кривые 3 и 4 характеризуют системы неустойчивые.ε

Системы 5 и 6 на границе устойчивости  5 - нейтральная система, 6 - колебательная граница устойчивости.

Пусть дифференциальное уравнение САУ в операторной форме имеет вид 

Тогда решение дифференциального уравнения (движение системы) состоит из двух частей  Вынужденное движение того же вида что и входное воздействие.

При отсутствии кратных корней где С i -постоянные интегрирования, определяемые из начальных условий,

 1 ,  2 …,  n – корни характеристического уравнения

Расположение корней характеристического

уравнения системы на комплексной плоскости

Корни характеристического уравнения не зависят ни от вида возмущения, ни от

начальных условий, а определяются только коэффициентами а 0 , а 1 , а 2 ,…,а n , то есть параметрами и структурой системы.

1-корень действительный, больше нуля;

2-корень действительный, меньше нуля;

3-корень равен нулю;

4-два нулевых корня;

5-два комплексных сопряженных корня, действительная часть которых

Положительна;

6-два комплексных сопряженных корня, действительная часть которых отрицательная;

7-два мнимых сопряженных корня.

Методы анализа устойчивости :

  1. Прямые (основаны на решении дифференциальных уравнений);
  2. Косвенные (критерии устойчивости).

Теоремы А.М. Ляпунова.

Теорема 1.

Теорема 2.

Примечания:

  1. Если среди корней характеристического уравнения имеется два и более нулевых корня, то система неустойчива.
  2. Если один корень нулевой, а все остальные находятся в левой полуплоскости, то система нейтральна.
  3. Если 2 корня мнимые сопряженные, а все остальные в левой полуплоскости, то система на колебательной границе устойчивости.

Критерии устойчивости САУ.

Критерий устойчивости - это правило, позволяющее выяснить устойчивость системы без вычисления корней характеристического уравнения.

В 1877г. Раус установил:

1. Критерий устойчивости Гурвица

Критерий разработан в 1895г.

Пусть определено характеристическое уравнение замкнутой системы: уравнение приводим к виду, чтобы a 0 >0.

Составим главный определитель Гурвица по следующему правилу:

по главной диагонали записываются коэффициенты уравнения, начиная со второго по последний, столбцы вверх от диагонали заполняются коэффициентами с возрастающими индексами, а столбцы вниз от диагонали - коэффициентами с убывающими индексами. В случае отсутствия в уравнении какого-либо коэффициента и вместо коэффициентов с индексами меньше 0 и больше n пишут нуль.

Выделим диагональные миноры или простейшие определители в главном определителе Гурвица:

Формулировка критерия.

Для систем выше второго порядка кроме положительности всех коэффициентов характеристического уравнения необходимо выполнение следующих неравенств:

  1. Для систем третьего порядка:
  2. Для систем четвертого порядка:
  3. Для систем пятого порядка:
  1. Для систем шестого порядка:

Пример. Дано характеристическое уравнение исследовать устойчивость системы по Гурвицу.

Для устойчивых систем необходимо и

2. Критерий Рауса

Критерий Рауса используется при исследовании устойчивости систем высокого порядка.

Формулировка критерия:

Таблица Рауса.

Алгоритм заполнения таблицы: в первой и второй строках записываются коэффициенты уравнения с четными и нечетными индексами; элементы остальных строк вычисляются по следующему правилу:

Достоинство критерия: можно исследовать устойчивость систем любого порядка.

2. Критерий устойчивости Найквиста

Принцип аргумента

В основе частотных методов лежит принцип аргумента.

Проведем анализ свойств многочлена вида:

Где  i - корни уравнения

На комплексной плоскости каждому корню соответствует вполне определенная точка. Геометрически каждый корень  i можно изобразить в виде вектора, проведенного из начала координат в точку  i : |  i | - длина вектора, arg  i - угол между вектором и положительным направлением оси абсцисс. Отобразим D(p) в пространство Фурье, тогда где j  -  i - элементарный вектор.

Концы элементарных векторов находятся на мнимой оси.

Модуль вектора, а аргумент (фаза)

Направление вращения вектора против часовой стрелки принимают за ПОЛОЖИТЕЛЬНОЕ. Тогда при изменении  от до каждый элементарный вектор (j  -  i ) повернется на угол +  , если  i лежит в левой полуплоскости.

Пусть D ( )=0 имеет m корней в правой полуплоскости и n - m корней в левой, тогда при возрастании от до изменение аргумента вектора D(j ) (угол поворота D(j ), равный сумме изменений аргументов элементарных векторов) будет

Принцип аргумента:

Критерий Найквиста базируется на частотных характеристиках разомкнутой цепи САУ, так как по виду частотных характеристик разомкнутой цепи можно судить об устойчивости замкнутой системы.

Критерий Найквиста нашел широкое применение в инженерной практике по следующим причинам:

  1. Устойчивость системы в замкнутом состоянии исследуют по частотной передаточной функции ее разомкнутой цепи, а эта функция, чаще всего состоит из простых сомножителей. Коэффициентами являются реальные параметры системы, что позволяет выбирать их из условий устойчивости.
  2. Для исследования устойчивости можно использовать экспериментально полученные частотные характеристики наиболее сложных элементов системы (объект регулирования, исполнительный орган), что повышает точность полученных результатов.
  3. Исследовать устойчивость можно по ЛЧХ, построение которых несложно.
  4. Удобно определять запасы устойчивости.

1. Система, устойчивая в разомкнутом состоянии

Пусть введем вспомогательную функцию заменим p  j  , тогда

Согласно принципа аргумента изменение аргумента D(j  ) и D з (j  ) при 0<  <  равно Тогда то есть годограф W 1 (j  ) не должен охватывать начало координат.

Для упрощения анализа и расчетов сместим начало радиуса-вектора из начала координат в точку (-1, j 0), а вместо вспомогательной функции W 1 (j  ) используем АФХ разомкнутой системы W (j  ).

Формулировка критерия №1

Примеры.

Отметим, что разность числа положительных и отрицательных переходов АФХ левее точки (-1, j 0) равна нулю.

2. Система, имеющая полюсы на мнимой оси в разомкнутом состоянии

Для анализа устойчивости системы АФХ дополняют окружностью бесконечно большого радиуса при  0 против часовой стрелки до положительной вещественной полуоси при нулевых полюсах, а в случае чисто мнимых корней - полуокружностью по часовой стрелке в точке разрыва непрерывности АФХ.

Формулировка критерия №2

  1. Система с неустойчивой разомкнутой цепью

Более общий случай - знаменатель передаточной функции разомкнутой системы содержит корни, лежащие в правой полуплоскости. Появление неустойчивости разомкнутой системы вызывается двумя причинами:

  1. Следствием наличия неустойчивых звеньев;
  2. Следствием потери устойчивости звеньев, охваченных положительной или отрицательной обратными связями.

X отя теоретически вся система в замкнутом состоянии может быть устойчивой при наличии неустойчивости по цепи местной обратной связи, практически такой случай является нежелательным и его надо избегать, стремясь использовать только устойчивые местные обратные связи. Это объясняется наличием нежелательных свойств, в частности появлением условной устойчивости, которая при имеющихся обычно в системе нелинейностях может в некоторых режимах привести к потере устойчивости и появлению автоколебаний. Поэтому, как правило, при расчете системы выбирают такие местные обратные связи, которые были бы устойчивыми при разомкнутой главной обратной связи .

Пусть характеристический многочлен D (p ) разомкнутой системы имеет m корней с положительной вещественной частью.

Тогда

Вспомогательная функция при замене p  j  согласно принципа аргумента для устойчивых замкнутых систем должна иметь следующее изменение аргумента при

Формулировка критерия №3

Формулировка Я.З. Цыпкина

Критерий Найквиста для ЛЧХ

Примечание: фазовая характеристика ЛЧХ астатических систем дополняется монотонным участком +  /2 при  0.

Пример 1.

Здесь m =0  система устойчива, но при уменьшении k система может быть неустойчива, поэтому такие системы называются условно-устойчивыми.

Пример 2.

20 lgk

1/ T 0

Здесь

При любых k система неустойчива. Такие системы называются структурно-неустойчивыми.

Пример 3.

АФХ охватывает точку с координатами (-1, j 0) 1/2 раза, следовательно замкнутая система устойчива.

Пример 4.

при  0 АФХ имеет разрыв, и поэтому ее нужно дополнить дугой бесконечно большого радиуса от отрицательной вещественной полуоси.

На участке от -1 до -  имеется один положительный переход и полтора отрицательных. Разность между положительными и отрицательными переходами равна -1/2, а для устойчивости замкнутой системы требуется +1/2, так как характеристический полином разомкнутой системы имеет один положительный корень - система неустойчива.

Абсолютно-устойчивой называют систему, которая сохраняет устойчивость при любом уменьшении коэффициента усиления разомкнутой цепи, иначе система условно- устойчивая.

Системы, которые можно сделать устойчивыми путём изменения их параметров, называются структурно-устойчивыми , иначе – структурно-неустойчивыми.

Запасы устойчивости

Для нормального функционирования всякая САР должна быть удалена от границы устойчивости и иметь достаточный запас устойчивости. Необходимость этого обусловлена следующими причинами:

  1. Уравнения элементов САР, как правило, идеализированы, при их составлении не учитывают второстепенные факторы;
  2. При линеаризации уравнений погрешности приближения дополнительно увеличиваются;
  3. Параметры элементов определяют с некоторой погрешностью;
  4. Параметры однотипных элементов имеют технологический разброс;
  5. При эксплуатации параметры элементов изменяются вследствие старения.

В практике инженерных расчетов наиболее широко используют определение запаса устойчивости на основе критерия НАЙКВИСТА, по удалению АФХ разомкнутой системы от критической точки с координатами (-1, j 0), что оценивают двумя показателями: запасом устойчивости по фазе и запасом устойчивости по модулю (по амплитуде) H .

Для того чтобы САР имела запасы устойчивости не менее  и H , АФХ ее разомкнутой цепи при удовлетворении критерия устойчивости не должна заходить в часть кольца, заштрихованного на рис. 1, где H определяется соотношением

Если устойчивость определяется по ЛЧХ условно-устойчивых систем, то для обеспечения запасов устойчивости не менее  и h необходимо, чтобы:

а) при h  L  - h фазо-частотная характеристика удовлетворяла неравенствам θ > -180  +  или θ < -180  -  , т.е. не заходила в заштрихованную область 1 на рис. 2;

б) при -180  +   θ  -180  -  амплитудно-частотная характеристика удовлетворяла неравенствам L < - h или L > h , т.е. не заходила в заштрихованные области 2" и 2"" на рис. 2.

Для абсолютно устойчивой системы запасы устойчивости  и h определяют так, как показано на рис. 3:

1. Запас по фазе

  1. Запас по модулю h =- L (ω -π ), где ω -π – частота, при которой θ=-180 ˚ .

Необходимые значения запасов устойчивости зависит от класса САР и требований к качеству регулирования. Ориентировочно должно быть  =30  60  и h =6  20дБ.

Минимально допустимые запасы устойчивости по амплитуде должны быть не менее 6дБ (то есть передаточный коэффициент разомкнутой системы в два раза меньше критического), а по фазе не менее 25  30  .

Устойчивость системы со звеном чистого запаздывания

Если АФХ разомкнутой системы проходит через точку (-1, j 0), то система на грани устойчивости.

Систему с чистым запаздыванием можно сделать устойчивой, если в схему включить безынерционное звено с передаточным коэффициентом, меньшим 1. Возможны и другие виды корректирующих устройств.

Структурно-устойчивые и структурно-неустойчивые системы

Один из способов изменения качества системы (в смысле устойчивости) – это изменить передаточный коэффициент разомкнутой системы.

При изменении k L ( ) поднимется либо опускается. Если k увеличивать, L ( ) поднимается и  ср будет возрастать, а система останется неустойчивой. Если k уменьшать, то систему можно сделать устойчивой. Это один из способов коррекции системы.

Системы, которые можно сделать устойчивыми путем изменения параметров системы, называются СТРУКТУРНО-УСТОЙЧИВЫМИ.

Для этих систем есть критический передаточный коэффициент разомкнутой системы. K крит. – это такой передаточный коэффициент, когда система на грани устойчивости.

Существуют системы СТРУКТУРНО-НЕУСТОЙЧИВЫЕ – это такие системы, которые невозможно сделать устойчивыми изменением параметров системы, а требуется для устойчивости изменять структуру системы.

Пример.

Рассмотрим три случая:

  1. Пусть

Тогда

Проверим работу системы на устойчивость.

Δ = а 3 Δ 2 >0.

Для определения k рс.кр. приравняем нулю  2 .

Тогда

При при

Рассматриваемая система СТРУКТУРНО-УСТОЙЧИВАЯ, так как ее можно стабилизировать путем изменения параметров звеньев.

  1. Пусть и те же, что в первом случае.

Теперь Статической ошибки по каналу управления нет.

Условия устойчивости по Гурвицу:

Пусть  2 =0, тогда если то система неустойчивая.

Данная система с астатизмом 1-го порядка СТРУКТУРНО-УСТОЙЧИВАЯ.

  1. Пусть

Всегда система неустойчива. Эта система СТРУКТУРНО-НЕУСТОЙЧИВАЯ.

Необходимым условием работоспособности системы автоматического управления (САУ), является её устойчивость. Под устойчивостью принято понимать свойство системы восстанавливать состояние равновесия, из которого она была выведена под влиянием возмущающих факторов после прекращения их воздействия .

Постановка задачи

Получение простого, наглядного и общедоступного инструмента для решения задач расчёта устойчивости систем автоматического управления, что является обязательным условием работоспособности любого промышленного робота и манипулятора.

Теория просто и кратко

Анализ устойчивости системы по методу Михайлова сводится к построению характеристического многочлена замкнутой системы (знаменатель передаточной функции), комплексной частотной функции (характеристического вектора):

Где и – соответственно вещественная и мнимая части знаменателя передаточной функции, по виду которой можно судить об устойчивости системы.

Замкнутая САУ устойчива, если комплексная частотная функция , начинаясь на
стрелки начало координат, проходя последовательно n квадрантов, где n – порядок характеристического уравнения системы, т. е.

(2)


Рисунок 1. Амплитудно-фазовые характеристики (годографы) критерия Михайлова: а) – устойчивой системы; б) – неустойчивой системы (1, 2) и системы на границе устойчивости (3)

САУ электроприводом манипулятора промышленного робота (МПР)


Рисунок 2 – Структурная схема САУ электроприводом МПР

Передаточная функция данной САУ имеет следующее выражение :

(3)
где kу – коэффициент усиления усилителя, kм – коэффициент пропорциональности частоты вращения двигателя величине напряжения на якоре, Tу – электромагнитная постоянная времени усилителя, Tм – электромеханическая постоянная времени двигателя с учётом инерции нагрузки (по своим динамическим характеристикам двигатель представляет собой передаточную функцию последовательно соединённых инерционного и интегрирующего звеньев), kдс – коэффициент пропорциональности между входной и выходной величинами датчика скорости, K – коэффициент усиления главной цепи: .

Численные значения в выражение передаточной функции следующие:

K = 100 град / (В∙с); kдс = 0,01 В / (град∙с); Tу = 0,01 с; Tм = 0,1с.

Заменив s на :
(4)

Решение на Python

Здесь следует отметить, что подобные задачи на Python ещё никто не решал, во всяком случае я не нашёл. Это было связано с ограниченными возможностями работы с комплексными числами. С появлением SymPy можно сделать следующее:

From sympy import * T1,T2,w =symbols("T1 T2 w",real=True) z=factor ((T1*w*I+1)*(T2*w*I+1)*w*I+1) print ("Характеристический многочлен замкнутой системы -\n%s"%z)
Где I мнимая единица, w- круговая частота, T1= Tу = 0.01 ,T2= Tм = 0.1
Получим развёрнутое выражение для многочлена:

Характеристический многочлен замкнутой системы –

Сразу видим, что многочлен третьей степени. Теперь получим мнимую и действительную части в символьном отображении:

Zr=re(z) zm=im(z) print("Действительная часть Re= %s"%zr) print("Мнимая часть Im= %s"%zm)
Получим:

Действительная часть Re= -T1*w**2 - T2*w**2 + 1
Мнимая часть Im= -T1*T2*w**3 + w

Сразу видим вторую степень действительной части и третью мнимой. Подготовим данные для построения годографа Михайлова. Введём численные значения для T1 и T2, и будем менять частоту от 0 до 100 с шагом 0.1 и построим график:

From numpy import arange import matplotlib.pyplot as plt x= y= plt.plot(x, y) plt.grid(True) plt.show()


Из графика не видно, то годограф начинается на действительной положительной оси. Нужно изменить масштабы осей. Приведу полный листинг программы:

From sympy import * from numpy import arange import matplotlib.pyplot as plt T1,T2,w =symbols("T1 T2 w",real=True) z=factor((T1*w*I+1)*(T2*w*I+1)*w*I+1) print("Характеристический многочлен замкнутой системы -\n%s"%z) zr=re(z) zm=im(z) print("Действительная часть Re= %s"%zr) print("Мнимая часть Im= %s"%zm) x= y= plt.axis([-150.0, 10.0, -15.0, 15.0]) plt.plot(x, y) plt.grid(True) plt.show()
Получим:

-I*T1*T2*w**3 - T1*w**2 - T2*w**2 + I*w + 1
Действительная часть Re= -T1*w**2 - T2*w**2 + 1
Мнимая часть Im= -T1*T2*w**3 + w


Теперь уже видно, что годограф начинается на действительной положительной оси. САУ устойчива, n=3, годограф совпадает с приведённым на первом рисунке.

Дополнительно убедится в том, что годограф начинается на действительной оси можно дополнив программу следующим кодом для w=0:

Print("Начальная точка М(%s,%s)"%(zr.subs({T1:0.01,T2:0.1,w:0}),zm.subs({T1:0.01,T2:0.1,w:0})))
Получим:

Начальная точка М(1,0)

САУ сварочного робота

Наконечник сварочного узла (НСУ) подводится к различным местам кузова автомобиля, быстро и точно совершает необходимые действия. Требуется определить устойчивость по критерию Михайлова САУ позиционированием НСУ.


Рисунок 3. Структурная схема САУ позиционированием НСУ

Характеристическое уравнение данной САУ будет иметь вид :

Где K – варьируемый коэффициент усиления системы, a – определённая положительная константа. Численные значения: K = 40; a = 0,525.

Решение на Python

rom sympy import * from numpy import arange import matplotlib.pyplot as plt w =symbols(" w",real=True) z=w**4-I*6*w**3-11*w**2+I*46*w+21 print("Характеристический многочлен замкнутой системы -\n%s"%z) zr=re(z) zm=im(z) print("Начальная точка М(%s,%s)"%(zr.subs({w:0}),zm.subs({w:0}))) print("Действительная часть Re= %s"%zr) print("Мнимая часть Im= %s"%zm) x= y= plt.axis([-10.0, 10.0, -50.0, 50.0]) plt.plot(x, y) plt.grid(True) plt.show()
Получим:

Характеристический многочлен замкнутой системы - w**4 - 6*I*w**3 - 11*w**2 + 46*I*w + 21
Начальная точка М(21,0)
Действительная часть Re= w**4 - 11*w**2 + 21
Мнимая часть Im= -6*w**3 + 46*w

Построенный годограф Михайлова, начинаясь на вещественной положительной оси (М (21,0)), огибает в положительном направлении начало координат, проходя последовательно четыре квадранта, что соответствует порядку характеристического уравнения. Значит, данная САУ позиционированием НСУ – устойчива.

Выводы

При помощи модуля SymPy Python получен простой и наглядный инструмент для решения задач расчёта устойчивости систем автоматического управления, что является обязательным условием работоспособности любого промышленного робота и манипулятора.

Ссылки

  1. Дорф Р. Современные системы управления / Р. Дорф, Р. Бишоп. – М.: Лаборатория Базовых Знаний, 2002. – 832 с.
  2. Юревич Е.И. Основы робототехники 2-е издание / Е.И. Юревич. – С-Пб.: БХВ-Петербург, 2005. – 416 с.

Под устойчивостью или стабильностью системы в широком смысле понимается свойство системы возвращаться в некоторое установившееся состояние или режим после нарушения какими либо внешними или внутренними факторами.

Система может характеризоваться весьма сложным поведением, непрерывно изменятся, но при этом некоторые ее параметры могут сохранять постоянные значения. В таком случае можно говорить об устойчивости системы относительно именно этих параметров.

Например, исследуя процессы в колебательном контуре, было установлено, что не зависимо от начальных значений напряжения и тока, независимо от того имеет ли место затухающие или незатухающие колебания, частота их в данном контуре всегда остается неизменной и определяется параметрами контура. Это дает права назвать колебательный контор системой устойчивой относительно частоты собственных колебаний.

По значению к понятию устойчивости близки понятии равновесия и стационарности (состояния равновесия, стационарный процесс). Однако эти понятия имеет более узкий, частный смысл. Таким образом, более узким, частным является и употребляемое иногда понятие устойчивости системы как способности её стремиться из различных начальных состояний к некоторому равновесному, стационарному состоянию.

Основным содержанием теории устойчивости является: исследования влияния возмущающих воздействий на поведения системы, при этом под возмущающими факторами понимают силы обычно неизвестные заранее, которые как следствие своей неопределенности, так и в следствие относительной малости по сравнению с основными силами, не учитываются при описании движений системы.

Другим примером устойчивости поведения системы является ее цикличности.

Цикличным поведением называется такое, когда система при отсутствии возмущений периодически многократно проходит одну и ту же последовательность состояний – устойчивое множество состояний.

Относительно некоторого возмущения действующего на систему, её состояние равновесия (или цикл) может характеризоваться несколькими типами устойчивости.

Если система возвращается в состояние равновесия при любых возможных воздействиях на неё (при любых возмущениях), то равновесия называют абсолютно устойчивым . Например, маятник.

Если система, при возмущениях возвращается в состояние равновесия только из некоторой области, то равновесие называют устойчивой относительно этой области . Здесь примером может быть кирпич, который если чуть-чуть наклонить, то вернется в свое состояние, а если сильно наклонить, то упадет.

Если после воздействия на систему она сохраняет новое состояние, вызванное этим воздействием, то систему называют безразлично устойчивой . Простейшим примером является однородный круглый диск, укрепленный на оси, проходящий через его центр.

Во всех остальных случаях, система является не устойчивой.

В сложных кибернетических системах в зависимости от характера исследуемых задач и типа возмущения предлагается применять различные методы определения устойчивости (критерии устойчивости). Одним из таких методов, получившее широкое распространение, является определение устойчивости предложенным ученым Ляпуновым: предполагается, что некоторый объект (система автоматического управления) описывается системой дифференциальных уравнений.

Устойчивость поведения систем, как правило, является положительным свойством, обеспечивающим их нормальное целенаправленное функционирования и сохранения целостности в экстремальных условиях. Однако, в ряде случаев, устойчивость отражает инертность, косность системы, ограничивающую возможность управления ими.

Устойчивость является свойством всей системы в целом, а не в какой либо отдельной её части. Система, состоящая из нескольких устойчивых подсистем, может оказаться неустойчивой и наоборот: при объединения некоторого количества неустойчивых подсистем, может возникнуть устойчивая система, в зависимости от способа такого объединения.

С понятием устойчивости тесно связано понятие гомеостаза или гомеостазиса (от греч гомео – равный, стазис – состояние), применяемое вначале в биологии, где оно обозначало поддержание постоянства существенных параметров организма (температура, давление, состава крови и т.д.). В настоящее время гомеостазисом называют свойство системы, при взаимодействии со внешней средой, сохранять существенные параметры в некоторых заданных пределах.

Для иллюстрации явления гомеостазиса английским нейрофизиологом У.Р. Эшби была построена аналоговая модель, названая им гомеостатом, содержащая 4 вращающиеся магнита, изменяющих при своем вращении сопротивления 4ьох жидкостных потенциометра.

Экономические системы и их особенности

Экономические системы представляет частный случай сложных динамических систем.

Экономическую систему определяют как функциональную подсистему общества, в которой осуществляется производство, распределение и потребление материальных благ. Схематично можно представить следующим образом:

В результате приложения общественного труда происходит преобразование природных ресурсов в материальные блага, потребляемые обществом, таким образом, общество по отношению к экономической подсистемы преобразования ресурсов (производственной системе) выступает с одной стороны как ассоциация производителей, с другой как ассоциация потребителей, формирующее определенные требования к материальным благам – их ассортименту, количеству и качеству.

Результат сравнения параметров общественной потребностей и фактически произведенных материальных благ, то есть разность между общественной потребностью и возможность её удовлетворения представляет стимул развития экономики, реализуемой в процессе управления. Однако, в процессе управления реализуется не только простые результаты такого сравнения, но и цели вырабатываемые обществом и определяемые рядом социально-политических факторов, свойственных той или иной общественной формации и в первую очередь в форме собственности на средства производства.

Экономические системы характеризуются рядом следующих особенностей:

Они отличаются большой сложностью, обусловленное в наличие множественных и достаточно сильных материальных и информационных связей между подсистемами и элементами системы

Для экономических систем характерны непрерывное, динамичное и в макро-масштабах не повторяющие развития по сравнению, например, с биологическими системами. Так если виды животных или растений в процессе эволюции меняются за период 1000, 10000 и более лет, то способы производства, экономические отношения могут претерпевать существенные и даже неоднократные изменения в течение жизни одного поколения людей.

Экономические системы испытывают непрерывное воздействие природных факторов и общества, при чем эти воздействия имеют в основном недетерминированный, а стохастический характер. Так распределение природных ресурсов, состояние погоды и другие факторы внешней среды поддаются прогнозированию лишь с некоторой степени достоверности. В свою очередь и определение потребностей общества в материальных благах так же поддаются лишь статистические оценки. Это обусловлено и сложностью и изменчивостью потребностей и вкусов отдельных членов общества, влиянием моды, и статистической природной демографией, определяющие количественные потребности общества и размеры трудовых ресурсов. Неопределенный в значительной степени характер носит так же прогнозы развития науки, возможности появления тех или иных открытий, изобретений и усовершенствований, эффективности внедрения новой техники и технологий в производство.

Одной из важнейших функций экономических систем является производство и соответственно одной из основных подсистем является производственная система.

В производственной системе осуществляется преобразование материально-вещественных компонентов – природных ресурсов в материальные блага, предназначенные для общественного потребления.

В производственной системе и соответственно производственно-технологической структуре характерны достаточно четко выражены иерархические свойства. При описании ее иерархической структуры нужно учитывать как вертикальные (отраслевые), так и горизонтальные (региональные) аспекты формирования структуры, при этом первичными элементами, то есть звеньями самого низкого уровня иерархии являются элементарные технологические операции.

Дальнейшее их рассмотрение не имеет социально-экономического смысла так как оно уже приводит в область изучения физиологических свойств. На более высоких уровнях иерархии находятся цеха, предприятия, производственные комплексы, отрасли и т.д. Подсистемы иерархической производственной системы связаны между собой в первую очередь материальными потоками (сырье, заготовки, полуфабрикаты, комплектующие изделия, готовые изделия и т.п.).

При этом каждому материальному потоку можно сопоставить определенный информационный поток. Так от производственного подразделения низшего уровня иерархии передается информация о производственных возможностях и их реализации в плановые органы более высшего порядка – объединения, отрасли которые в свою очередь передают ее в государственные органы управления.

Последние пользуясь связями сверху вниз передают административно-директивные задания и определённые параметры экономического функционирование.

На ряду с вопросами структуры производственно-экономических систем важную роль играют проблемы их инфраструктуры. Под инфраструктурой в экономике понимают совокупность отраслей и видов деятельности который является внешним по отношению к основному производственному циклу обслуживает производственную и непроизводственную сферу экономики обеспечивая тем самым нормальное функционирование. Основных отраслей материального производства и развития производительных сил.

К инфраструктуре относят:

Транспорт и связь

Научные учреждения и учебные заведения

Коммунальные хозяйства

Учреждения культуры т.д.

Особенности экономических систем выделяют особенности производственной деятельности предприятия к относящихся к данной системы. Так особенности аграрной экономической системы вытекают из особенности сельскохозяйственного производства. Одной из особенностью сельхоз производства является то, что получение продукции, осуществляется здесь единственным путем, то есть биологического синтеза с помощью растений, выращиваемых в естественном грунте.

В отличие от таких средств производства, как машины, строения, подвергающиеся износу и требующие замены такие производственные ресурсы, как уголь, нефть, руда, запасы которых истощаются, земля при правильном ведении хозяйства, наоборот может превышать свое плодородие. Тоже можно отнести и к природным ресурсам: лесам, животный мир, рыбные запасы и т.д.

Ещё одной особенностью сельхоз производства является его цикличность, при чем циклы эти могут быть весьма длительными: земледелии от года до 2ух и более лет, в садоводстве и животноводстве более десятка лет. В течение цикла производства имеет место ситуации, когда интервалы времени, необходимые для превращения исходного материала в готовый продукт, не совпадает с интервалами времени, требующие воздействие труда. Так основной процесс роста и созревание зерновых культур происходит почти без приложения труда за счет естественных воздействий окружающей среды – атмосферной влаги и солнечной радиации. А так как эти факторы оказываются от года году весьма не постоянными и даже не поддаются долгосрочному прогнозированию, то тем самым выносится стохастичность и не возможность точного планирования в природу сельхоз производства.

Существенно отличается технологичные процессы промышленного и сельхоз производства.

В промышленном производстве сырье, предметы труда заключают в себе, как правило всю массу производимого продукта, так например, для изготовления автомобиля необходимо поставить на завод соответствующее количество метала, заготовок и других материала. Между тем исходным материалом для сельхоз производства является лишь значительно меньше по массе исходного материала, элементы, например семена, которые содержат только зародыши будущего биологического объекта и некоторое минимальное количество питательных веществ, необходимого для начальной стадии их развития. В дальнейшем масса производимого продукта создается в результате естественного роста и развития растений и животных, и усвоения нужных ингредиентов из внешней среды (почва, воздух, удобрение и т.д.). Это особенность сельхоз производства является его ещё одним фактором стохастичности.

Все перечисленные основные факторы и ряд других, менее существенных затрудняет достижение в сельском хозяйстве той ритмичности, организованности, высокой эффективности использования современной техники и средств автоматизации.

Устойчивость системы автоматического управления является одной из важнейших характеристик системы, т.к. от нее зависит работоспособность системы. Система, у которой отсутствует устойчивость, не может качественно решать задачу управления. Отсутствие устойчивости также может привести к разрушению самой системы в процессе управления или разрушению объекта управления, поэтому использование неустойчивых систем нецелесообразно.

Устойчивость системы автоматического управления - это свойство системы воз-

вращаться в исходное состояние равновесия после прекращения воздействия, выведшего систему состояния первоначального равновесия.

Примером устойчивых и неустойчивых систем могут служить системы из шарика, расположенного на вогнутой и выпуклой поверхности, представленные на рисунке 60.

Рис.60. Примеры систем: а) устойчивой; б) неустойчивой

На рисунке 60а шарик, расположенный на вогнутой поверхности и смещенный в сторону определенным усилием, после окончания внешнего воздействия возвратится в положение первоначального равновесия. При отсутствии трения о поверхность или его минимальном значении шарик будет совершать непродолжительные колебания около положения равновесия до возвращения в первоначальное положение равновесия (кривая 1- затухающий колебательный процесс). При большом трении шарик возвратится в положение первоначального равновесия без колебаний (кривая 2 - апериодический процесс). При очень большом значении трения шарик может не вернуться в положение первоначального равновесия (кривая 3), но возвратится в область, близкую к положению равновесия. В рассмотренном случае налицо наличие устойчивой системы. В устойчивых САУ возникают подобные переходные процессы (затухающие колебательные и апериодические).

На рисунке 60б шарик, расположенный на выпуклой поверхности и смещенный в сторону определенным усилием, не возвратится в положение первоначального равновесия (кривая 4), поэтому система является неустойчивой. В неустойчивых системах возникают переходные процессы виде расходящихся колебаний (кривая 5) или апериодические (кривая 4).

Неустойчивость САУ, как правило, возникает из-за очень сильного действия обратной связи. Причинами динамической неустойчивости обычно являются значительные инерционные характеристики звеньев замкнутой системы, из-за которых сигнал обратной связи в режиме колебаний так отстает от входного сигнала, что оказывается с ним в фазе. Получается, что характер действия отрицательной обратной связи приобретает характер

положительной.

Составим математическое описание устойчивости и неустойчивости. Так как устойчивость системы зависит только от характера ее свободного движения, то данное свободное движение системы можно описать однородным дифференциальным уравнением:


характеристическое уравнение, которого будет представлено следующим выражением:

Общее решение однородного дифференциального уравнения (2.19.) представим в следующем виде:

где C k – постоянные, зависящие от начальных условий, p k – корни характеристического уравнения.

Корни характеристического уравнения могут быть комплексными (p k = α k ± jβ k ), действительными (p k = α k ) или мнимыми (p k = jβ k ). Комплексные корни всегда попарно сопряжены между собой, т.е. если имеется корень уравнения с положительной мнимой частью, то обязательно будет существовать корень с такой же по модулю, но отрицательной мнимой частью. y(t) при t из (2.21.) будет стремиться к нулю лишь тогда, когда каждое слагаемое С к е p k t → 0. Характер данной функции будет зависеть от вида корня. Возможные случаи расположения корней p k на комплексной плоскости и соответствующие им функции y(t) = С к е p k t представлены на рисунке 61. Вид функций показан внутри эллипсов.

Рис.61. Влияние расположения корней характеристического уравнения на

составляющие свободного движения системы

На рисунке 61 видно, что если каждому действительному корню p k = α k для выражения (2.21.) будет соответствовать слагаемое:

y к (t) = С к е α k t (2.22.)

тогда приα к < 0 (корень p 1) функция при t → ∞ будет стремиться к нулю, при α к > 0 (корень p 3 ) функция будет неограниченно возрастать, а при α к = 0 (корень p 2)функция будет оставаться постоянной.

Если характеристическое уравнение будет иметь комплексные корни, то каждой паре сопряженных комплексных корней p k, k+1 = α k ± jβ k , будут соответствовать два слагаемых, которые можно объединить и представить в виде следующего выражения:

Данная функция представляет собой синусоиду с изменяющейся по экспоненте амплитудой и частотой β k . При отрицательной действительной части двух комплексных корней α к, к+1 < 0 , (корни p 4 и p 5 )колебательная составляющая функции будет затухать, а при положительной действительной части α к, к+1 > 0 , (корни p 8 и p 9 ) амплитуда колебаний будет увеличиваться неограниченно. При отсутствии действительной части комплексных корней α к, к+1 = 0 (корни p 6 и p 7 ), т.е. наличии только мнимых корней, функция будет представлять собой незатухающую синусоиду с частотой β k .

Исходя из определения устойчивости, если первоначальное положение равновесия принимается за ноль, то у устойчивых систем величина выходного параметра с течением времени должна стремиться к нулю, т.е. система сама возвратится в положение равновесия. Необходимым и достаточным условием этого является, чтобы все слагаемые решения дифференциального уравнения (2.21.) с течением времени стремились к нулю, что может быть достигнуто при отрицательных действительных корнях уравнения, а комплексные корни должны иметь отрицательную действительную часть. Существование хотя бы одного положительного действительного корня или пары комплексных корней с положительной действительной частью приведет к тому, что величина выходного параметра системы не возвратится к первоначальному значению, т.е. система будет неустойчивой.

Анализируя местоположение корней характеристического уравнения на комплексной плоскости, представленное на рисунке 62, можно заметить, что САУ является устойчивой, если все корни характеристического уравнения находятся в левой полуплоскости и все они являются действительными отрицательными или комплексными с отрицательной действительной частью. Наличие хотя бы одного корня в правой полуплоскости будет характеризовать неустойчивость системы.

Устойчивость системы является внутренним свойством системы, зависящим только от вида корней характеристического уравнения, описывающего свойства системы, и не зависящим от внешнего воздействия. Необходимым и достаточным условием устойчивости системы является положение всех корней уравнения в левой (отрицательной) полуплоскости.

Положительную и отрицательную полуплоскости, в которых находятся положительные или отрицательные корни характеристического уравнения, обеспечивающие устойчивость или неустойчивость системы, разделяет мнимая ось ± . Данная ось является границей устойчивости, поэтому если у характеристического уравнения есть одна пара чисто мнимых корней p k, k+1 jβ k , а другие корни находятсяв отрицательной полуплоскости, то система характеризуется наличием незатухающих колебаний с частотой ω = β к. Принято считать, что в таком случае система находится на колебательной границе устойчивости .

Точка β = 0 на мнимой оси соответствует нулевому корню. Считается, что уравнение, имеющее один нулевой корень, находится на апериодической границе устойчивости , а при наличии двух нулевых корней система неустойчива.

Рис.62. Расположение корней характеристического уравнения устойчивой системы на

комплексной плоскости

Не стоит забывать, что уравнения почти всех реальных САУ не являются линейными, а приведены к линейным уравнениям с помощью линеаризации, поэтому допущения, сделанные при линеаризации, могут повлиять на правильность определения устойчивости системы.

А. М. Ляпунов в 1892 г. в своей работе «Общая задача об устойчивости движения» привел доказательство теоремы, в которой были сделаны следующие выводы для линеаризованных уравнений:

1. Если все действительные корни характеристического уравнения системы являются отрицательными, то система считается устойчивой.

2. Если хотя бы один действительный корень характеристического уравнения системы положительный, то система считается неустойчивой.

3. Если характеристическое уравнение линеаризованной системы имеет хотя бы один нулевой корень или одну пару мнимых корней, то нельзя судить об устойчивости реальной системы по линеаризованному уравнению.

Следовательно, вывод об устойчивости реальных систем необходимо делать на основе анализа исходного нелинейного уравнения и для определения неустойчивости или устойчивости системы будет достаточно выявить положительность (отрицательность) действительных корней характеристического уравнения.

Критериями устойчивости называют определенные правила, по которым в теории автоматического управления определяют знаки корней характеристического уравнения, не решая его. Различают алгебраические и частотные критерии устойчивости.

Алгебраическими критериями устойчивости системыназывают необходимое и достаточное условие отрицательности корней при определенных значениях коэффициентов в характеристическом уравнении.

Частотными критериями устойчивости системы установлена зависимость устойчивости системы от формы частотных характеристик системы.

gastroguru © 2017