Роль нуклеоида в бактериальной клетке. Особенности кольцевой молекулы днк прокариотической клетки. По расположению в клетке различают мезосомы

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым - промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.

Цитоплазма

Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) - консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

Нуклеоид

Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь

Капсула - слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (от flagellum - жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили

Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны - несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры

Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.

Ядерные элементы, или нуклеоиды бактерий. Бактерии относятся к прокариотам, т. е. организмам, не содержащим морфологически обособленных ядер. У бактерий есть тельца, именуемые нуклеоидами, или хроматиновыми тельцами. Они содержат дезоксирибонуклеиновую кислоту (ДНК) и выполняют функции ядра. Делению клетки предшествует деление дискретных телец- нуклеоидов, которые можно выявить специфическими реакциями и методами окраски, особенно после предварительной специальной обработки препаратов. Функции ядерного аппарата бактерий соответствуют функциям ядер у эукариотов, т. е. служат носителями наследственных признаков вида и передают их потомству.[ ...]

Нуклеопротеиды состоят из белка и нуклеиновых кислот. Поскольку нуклеиновые кислоты вначале выделялись из растительных и животных клеток, содержащих ядра (nucleus - ядро), предполагалось, что они находятся только в ядрах. Позже с помощью цитохимических методов нуклеиновые кислоты были выявлены, кроме хромосом, в митохондриях, рибосомах, в независимых генетических элементах - плазмидах и гиалоплазме.[ ...]

Здесь С - центральный нуклеоид; - параметр, характеризующий структуру различных онковирусов, способную меняться в результате внешнего или внутреннего воздействия соответственно-N и В - соответственно концентрации электронов и ионных образований, составляющих онковирус; т1 и т2 - соответственно концентрации «работающих» электронов и ионных комплексов’ П, - продукт фототермической реакции; Е - энергия ЭМИ; кТ - тепловая энергия.[ ...]

При делении бактериальной клетки в ее нуклеоиде не удается установить какой-либо реорганизации, сравнимой с перестройкой ядра при делении клеток более высоко организованных организмов. Дочерние нуклеоиды образуются в результате либо перешнуровывания исходного нуклеоида, либо расхождения под углом двух его половин.[ ...]

КС - клеточная стенка, ЦПМ - цитоплазматическая мембрана, H - нуклеоид.[ ...]

КС - клеточная стенка, ЦПМ - цитоплазматическая мембрана, Н - нуклеоид, ФМС - фотосинтезирующие мембранные структуры, Увел, х 40 ООО.[ ...]

[ ...]

У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками - гистонами - ив нуклео-иде расположена в виде пучка фибрилл.[ ...]

Молодые интенсивно делящиеся клетки аназробов содержат нуклеоиды в виде гантелек, или У-образных фигур (рис. 46). Перед спорообразованием деление клеток прекращается, они резко увеличиваются в размерах. В это время происходит накопление большого количества запасного питательного вещества - гранулезы,- откладывающегося в виде гранул, из-за чего цитоплазма становится зернистой, а сами клетки раздуваются, принимая вид лимона (клостри-дии) (рис. 47-49) либо барабанной палочки (плектридии) (рис. 50, 51). Лишь у части про-теолитических анаэробов клетки не меняют своего первоначального вида, сохраняя обычную палочковидную (бациллярную) форму (рис. 52).[ ...]

Генетическая информация бактерий не ограничивается ДНК, расположенной в нуклеоиде бактериальной клетки. Как уже отмечалось в предыдущих разделах книги, носителями наследственных свойств служат также внехромосомные элементы, получившие общее название плазмид. В отличие от ДНК ядерных эквивалентов-нуклеоидов, являющихся органоидами бактериальной клетки, плазмиды представляют собой независимые генетические элементы. Потеря плазмид или их приобретение не отражается на биологии клетки (приобретение плазмид оказывает положительное влияние лишь на популяцию в целом, повышая жизнеспособность вида). К трансмиссивным относят плазмиды, инициирующие свойства доноров у клеток-хозяев. При этом последние получают новое качество - возможность конъюгировать с клетками-реципиентами и отдавать им свои плазмиды. Клетки-реципиенты, приобретая во время конъюгации плазмиды, сами превращаются в доноров.[ ...]

У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог - «ядерный эквивалент» - нуклеоид (см. рис. 2, 5), который является эволюционно более примитивной формой организации ядер-ного вещества. Микроорганизмы, не имеющие настоящего ядра, а обладающие его аналогом, относятся к прокариотам. Все бактерии - прокариоты. В клетках большинства бактерий основное количество ДНК сконцентрировано в одном или нескольких местах. В клетках эукариотов ДНК находится в определенной структуре - ядре. Ядро окружено оболочкой- мембраной.[ ...]

При изучении сверхтонких срезов спор эубактерий удалось установить, что центральная часть заполнена спороплазмой, содержащей несколько нуклеоидов. Спороплазма покрыта оболоч- кой, составляющей внутренний покров, называемый интиной; наружный слой - оболочка споры, придающая ей высокую резистентность к воздействию реактивов, благодаря чему споры трудно окрашиваются. В вегетативных клетках бактерий ее не бывает. Однако некоторые авторы руководств по микробиологии без основания считают, что стенки спор не содержат соединений, характерных для стенок вегетативных клеток, и состоят из других веществ. Высказывается предположение, что входящая в состав оболочки устойчивых к высокой температуре спор кальциевая соль диаминопимелиновой кислоты частично обусловливает терморезистентность спор.[ ...]

Первым признаком наступления спорообразования является изменение морфологии ну-клеоидов, принимающих вид шаровидных телец. Далее несколько нуклеоидов сближаются на одном из полюсов клетки, сливаются и образуют продольно расположенный извитый хроматиновый (ядерный) тяж (рис. 53, 54 и схема 1 на табл. 32).[ ...]

Анаэробы, как и другие бактерии, лишены настоящего ядра, окруженного мембраной и обладающего набором хромосом, ядрышком и ядерным соком. Вместо этого имеется аналог ядра - нуклеоид. Часто нуклеоид называют просто ДНК-содержащей плазмой (рис. 43).[ ...]

Принципиальное строение клеток кокков в целом не отличается от такового у других прокариотных микроорганизмов. Клетки кокков состоят из клеточной стенки, цитоплазматической мембраны, цитоплазмы с различными включениями и нуклеоида.[ ...]

ДНК в клетках E. coli представлена одиночной двухцепочечной кольцевой молекулой, м. м. около 2 х 10®, что составляет, примерно, 3 х 10® пар азотистых оснований. Она выполняет роль функционально активной хромосомы, получившей название нуклеоида. Последний является гаплоидной структурой. Поскольку расстояние между парами азотистых оснований в ДНК E. coli составляет около 3,4 Ä, то контурная длина молекулы ДНК бактерий этого вида составляет около ОД см, что превышает длину содержащей ее клетки примерно в 600 раз, а диаметр лишь 20 А (диаметр одиночной клетки E. coli равен около 0,75). Поэтому считают, что хромосома (ДНК) внутри бактерий этого вида существует в виде «свернутого генома», занимающего 1/6 объема клетки, т. е. в свернутой (скрученной) форме в виде около 50 петель, каждая из которых находится в сверхскрученной форме. Поскольку «свернутый геном» можно дестабилизировать обработкой РНК-азой, то считают, что в его состав входит также и РНК. Кроме того, в его составе обнаружены низкомолекулярные белки, роль которых еще не выяснена.[ ...]

Крайне малые размеры клеток являются характерной, но не главной особенностью бактерий. Все бактерии представлены особым типом клеток, лишенных истинного ядра, окруженного ядерной мембраной. Аналогом ядра у бактерий является нуклеоид - ДНК-содержащая плазма, не отграниченная от цитоплазмы мембраной. Кроме того, для бактериальных клеток характерны отсутствие митохондрий, хлоропла-стов, а также особое строение и состав мембранных структур и клеточных стенок. Организмы, в клетках которых отсутствует истинное ядро, называются прокариотами (доядер-ными) или протоцитами (т. е. организмами с примитивной организацией клеток).[ ...]

Протопласт цианофицей не имеет ядра, как и протопласт бактерий. В протопласте различают более прозрачную неокрашенную часть - центроплазму-и периферическую, содержащую пигменты - хроматоплазму. В центроплазме имеются более уплотненные участки, или нуклеоиды, представляющие собой ядерные эквиваленты, в которых обнаружены ДНК и РНК- В клетках цианофицей есть полости, заполненные газом - газовые вакуоли. Под микроскопом они выглядят черными тельцами; закономерны для планктонных родов, так как способствуют их пребыванию во взвешенном состоянии. Структур, содержащих пигменты, в центроплазме нет. Нуклеоиды синезеленых водорослей не отделены от цитоплазмы ядерной оболочкой так же, как и у бактерий.[ ...]

У бактерий иногда наблюдается половое размножение-Электронно-микроскопическое изучение кишечной палочки позво-- лило обнаружить прс топлазматические мостики между парами этой бактерии, причем одна из клеток - мужская, а другая - женская. При этом происходит частичная передача дезоксирибонуклеиновой кислоты нуклеоида от мужской клетки в женскую.[ ...]

Из всего сказанного следует, что местом синтеза белков и всех ферментов в клетке являются рибосомы. Образно выражаясь, это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка иэ аминокислот. Природа же синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.[ ...]

По вопросу о ядерных структурах бактерий до сих пор нет единого мнения. Несомненным является наличие ядерного вещества, состоящего главным образом из дезоксирибонуклеиновой кислоты (ДНК)- По мнению одних исследователей, ядерное вещество в клетках бактерий находится в диффузном (распыленном) состоянии. Другие ученые находили дифференцированное (обособленное) ядро. Электронная микроскопия позволила выявить у некоторых видов бактерий ядроподобные образования - нуклеоиды (от лат. пиЫеиэ - ядро). Однако по сравнению с ядрами клеток высших организмов эти образования имеют более простое строение. Нуклеоиды не отделены от цитоплазмы оболочкой и поэтому не имеют постоянной формы.[ ...]

Большое разнообразие географических и экологических условий, в пределах которых возможно расселение и существование в природе отдельных видов микроорганизмов, также накладывает свой отпечаток на химический состав клеток и отражается на биохимических функциях микробной популяции. Современные методы лабораторного эксперимента позволяют расчленить микробную клетку на ее органеллы и изучать в отдельности химический состав жгутиков, оболочек, протопласта, мембран, рибосом, нуклеоидов, а также содержимого протопласта: различные запасные питательные вещества - гликоген, волютнн, жиры, пигменты, витамины и другие метаболиты.[ ...]

Наследственные свойства бактерий или отдельные признаки закодированы в единицах наследственности - генах, линейно расположенных в хромосоме вдоль нити ДНК. Следовательно, ген является фрагментом нити ДНК- Каждому признаку соответствует определенный ген, а часто еще меньший отрезок ДНК - кодон. Иначе говоря, в нити ДНК в линейном порядке расположена информация обо всех свойствах бактерий. При этом у бактерий есть еще одна особенность. В ядрах эукариотов содержится обычно несколько хромосом, число их в ядре постоянно у каждого вида. Нуклеоид бактерий содержит лишь одно кольцо из нити ДНК, т. е. одну хромосому. Однако запасом информации, заключенным в одной хромосоме или в кольцеобразно сомкнувшейся двунитчатой спирали ДНК, сумма наследственных признаков бактериальной клетки не исчерпывается. Плазмиды содержат ДНК, также несущую генетическую информацию, передаваемую от материнской клетки к дочерней.[ ...]

Центроплазма клеток сине-зеленых водорослей состоит из гиалоплазмы и разнообразных палочек, фибрилл и гранул. Последние представляют собой хроматиновые элементы, которые окрашиваются ядерными красителями. Гиалоплазму и хроматиновые элементы вообще можно считать аналогом ядра, поскольку в этих элементах содержится ДНК; они при делении клеток делятся продольно, и половинки поровну распределяются по дочерним клеткам. Но, в отличие от типичного ядра, в клетках си-не-зеленых водорослей вокруг хроматиновых элементов никогда не удается обнаружить ядерной оболочки и ядрышек. В нем встречаются и рибосомы, содержащие РНК, вакуоли и полифосфатные гранулы.[ ...]

Решающее прямое доказательство генетической рюли ДНК было обеспечено разработкой методов генной инженерии, создавшей возможность конструирования рекомбинантных молекул ДНК с заданными свойствами. К настоящему времени возможности генной инженерии показаны на примере клонирования многих генов самых различных организмов. Что касается косвенных доказательств, то они известны очень давно и их несколько. Для ДНК характерна специфичность локализации в клетках, поскольку она обнаруживается только в ядрах клеток (хромосомах), митохондриях (у животных) и хлоропластах (у растений). У многих микроорганизмов ДНК локализована только в ядерной области (нуклеоиде) или в цитоплазме в виде плазмид. Для организмов каждого вида характерно определенное количество ДНК на клетку (табл. 10).[ ...]

В клетках гиф содержится по одному или несколько ядер. У некоторых фикомицетов в клетке спорангиеносца может содержаться много десятков и даже сотни ядер. Многоядерность наблюдается и в конидненосцах аскомицетов, у базидиомицетов она менее выражена. Строение ядра у грибов типично для эукариотов растительных организмов. Ядро покрыто оболочкой - нуклеолеммой - и имеет ядрышко и хро-матиновое вещество или хроматиновую нить, распадающуюся на определенной возрастной стадии клетки на присущее каждому роду постоянное число хромосом. Наличие ядерной оболочки у ядер эукариотных микроорганизмов (грибы и водоросли) - отличительный признак структуры их клеток. Нуклеоиды прокариотных микроорганизмов лишены оболочек, а хроматиновые нити не распадаются на хромосомы.[ ...]

Цитоплазма представляет собой коллоидный раствор, дисперсной фазой которого являются сложные белковые соединения и вещества, близкие к жирам, а дисперсионной средой - вода. У некоторых форм бактерий в цитоплазме содержатся включения - капельки жира, серы, гликогена и др. Постоянными составляющими бактериальных клеток являются особые выросты цитоплазматической мембраны - мезосомы, в которых содержатся ферментные окислительно-восстановительные системы. В этих образованиях идут в основном процессы, связанные с дыханием бактерий. В мелких включениях - рибосомах, содержащих рибонуклеиновую кислоту, осуществляется биосинтез белка. Большинство видов бактерий не имеет обособленного ядра. Ядерное вещество, представленное ДНК, у них не отделено от цитоплазмы и образует нуклеоид. Транспортировка веществ, необходимых для жизнедеятельности клетки, и отвод продуктов обмена осуществляется по особым каналам и полостям, отделенным от цитоплазмы мембраной, имеющей такое же строение, как и цитоплазматическая. Это структурное образование называется эндоплазматической сетью (ретикулум).

Строение любого организма (и механизма, кстати, тоже) напрямую зависит от выполняемых функций. Например, для человека самый простой способ передвижения – ходьба, поэтому у нас есть ноги, автомобиль создан для езды, поэтому у него вместо ног колеса. Точно так же функции клетки бактерии определяют ее строение. И каждая из ее внутренних структур в точности соответствует своим функциям.

Бактерии стояли у истоков жизни на нашей планете. Их вклад в образование полезных ископаемых и плодородных почв сложно переоценить. Они поддерживают баланс между углекислым газом и кислородом в атмосфере. Их способность разрушать отмершие организмы позволяет возвращать в природу необходимые питательные вещества. В организме человека многие процессы, например, пищеварение, не смогут протекать без их участия. Но те же самые бактериальные клетки, помогающие организму выжить, в определенных условиях могут нести болезни или смерть.

В зависимости от предназначения бактерии различаются по строению. Так, микроорганизмы, выделяющие кислород, обязаны иметь хлоропласты; клетки, способные передвигаться, всегда оснащены жгутиками; бактерии, выживающие в агрессивной среде, не могут обойтись без защитной капсулы и т.д. Некоторые из структурных элементов клетки существуют постоянно, другие ее компоненты возникают по мере необходимости или присущи только определенным видам бактерий. Но каждый элемент ее строения является примером идеального соответствия структуры выполняемым функциям.

Как устроена бактерия

Бактериальный организм – это всего лишь одна клетка. Вместо привычных органов, отвечающих за те или иные функции, у нее есть только своеобразные включения, именуемые органеллами. Их набор может быть различным в зависимости от вида клетки или условий ее существования, но некий обязательный комплект внутренних структур в бактерии присутствует постоянно. Именно они характеризуют клетку как бактериальную.

Бактериальная клетка относится к прокариотам – безъядерным одноклеточным организмам. Это означает, что в ее строении отсутствует мембрана, отделяющая ядро от цитоплазмы. Роль ядра в бактерии выполняет нуклеоид (замкнутая молекула ДНК). В прокариотической клетке есть основные и дополнительные органеллы (структуры). К ее основным структурам относят:

  • нуклеоид;
  • клеточную стенку (грамположительный или грамотрицательный защитный слой);
  • цитоплазматическую мембраны (тонкую прослойку между клеточной стенкой и цитоплазмой);
  • цитоплазму, в которой находятся нуклеоид и рибосомы (молекулы РНК).

Дополнительными органеллами (органоидами) клетка обзаводится при неблагоприятных условиях. Они могут появляться и исчезать в зависимости от окружающей среды. К необязательным структурам клетки относят капсулы, пили, споры, различные включения типа плазмид или зерен волютина.

Ядро в безъядерной клетке

Нуклеоид («подобный ядру») – один из важнейших органоидов в прокариотической клетке, выполняющий функции ядра. Он отвечает за хранение и передачу генетического материала. Нуклеоид представляет собой замкнутую в кольцо молекулу ДНК, соответствующую одной хромосоме. Эта кольцевая молекула выглядит как беспорядочное переплетение нитей. Однако, исходя из ее функций (точное распределение генов по дочерним организмам), становится понятно, что хромосома бактерий имеет высокоупорядоченную структуру.

Как правило, постоянной наружной формы эта органелла не имеет, но ее можно легко различить на фоне гелеподобной цитоплазмы в электронный микроскоп. При исследовании с помощью обычного светового микроскопа бактерию необходимо предварительно окрасить, т. к. в естественном состоянии бактерии прозрачны и незаметны на фоне предметного стекла. После специального окрашивания область ядерной вакуоли бактерии становится отчетливо видна.

Молекула ДНК (нуклеоид) состоит из 1,6 х 107 нуклеотидных пар. Нуклеотид – это отдельный «кирпичик», звено, из которого состоят все ядерные нуклеиновые кислоты (ДНК, РНК). Таким образом, нуклеотид только отдельная малая часть нуклеоида. Длина молекулы ДНК в развернутом состоянии может быть в тысячу раз больше, чем длина самой бактериальной клетки.

Некоторые бактериальные клетки содержат дополнительные хранилища наследственной информации – плазмиды. Это внехромосомные генетические элементы, состоящие из двухцепочечных ДНК. Они намного меньше нуклеоида и содержат «всего» 1500–40 000 пар нуклеотидов. В таких плазмидах может находиться до сотни генов. Их существование может быть полностью автономным, хотя в определенных условиях дополнительные гены легко встраиваются в основную цепочку ДНК.

Каркас для одноклеточных

Клеточная стенка выполняет формообразующую функцию, т. е. одновременно работает «скелетом» для клетки и заменяет ей кожу. Эта жесткая наружная оболочка:

  • защищает бактериальные «внутренности»;
  • отвечает за форму бактерий;
  • транспортирует питательные вещества внутрь и выводит отходы наружу.

Встречаются бактериальные клетки округлой (кокки), извилистой (вибрионы, спириллы), палочкообразной формы. Есть микроорганизмы похожие на колбочки, звездочки, кубики или имеющие С-образный вид.

Механические и физиологические функции (защита и транспорт) бактериальной клеточной стенки зависят от ее строения. Изучать строение клеточной стенки удобно с помощью метода Грама. Этот датчанин предложил способ окраски бактерий анилиновыми красителями. В зависимости от реакции клеточной оболочки на краску различают:

  1. Грамположительные (поддающиеся окраске) бактерии. Их оболочка состоит из одного слоя, внешняя мембрана отсутствует.
  2. Грамотрицательные бактерии имеют оболочку, не удерживающую краситель (после промывки стенка обесцвечивается). Их наружная оболочка намного тоньше, чем у грамположительных, при этом она имеет два слоя – наружную мембрану и располагающуюся под ней бактериальную стенку.

Такое разделение бактерий имеет большое значение в медицинских исследованиях – чаще всего патогенные микробы имеют грамположительную стенку. Если анализ выявил грамположительные бактерии, то есть повод для переживаний. Грамотрицательные клетки намного безопасней. Некоторые из них постоянно присутствуют в организме и могут представлять угрозу только в случае неконтролируемого размножения. Это так называемые условно-патогенные бактерии.

Внешняя мембрана грамотрицательных бактерий расширяет функции бактериальной стенки. Меняется ее проницаемость и транспортные свойства. Внешняя мембрана имеет различные каналы (поры), избирательно пропускающие вещества внутрь клетки – полезные проходят свободно, а токсины отторгаются. То есть наружный слой грамотрицательной клетки выполняет функцию «решета» для молекул. Этим можно объяснить большую устойчивость грамотрицательных организмов к неблагоприятным условиям: всевозможным ядам, химическим веществам, ферментам, антибиотикам.

В биологии «слоенный пирог» из клеточной стенки и цитоплазматической мембраны называют клеточной оболочкой.

Что такое ЦПМ и мезосомы

Между клеточной стенкой и цитоплазмой расположен еще один органоид – цитоплазматическая мембрана (ЦПМ). В ее функции входит ограничение внутреннего содержимого клетки, поддержание ее формы, защита от проникновения агрессивных факторов и беспрепятственный допуск питательных веществ. По сути, это еще одно молекулярное «сито».

Через цитоплазматическую мембрану свободно проходят электроны (энергия) и транспорт материалов, необходимых для существования клетки. Различают два активных процесса, протекающих через мембрану:

  • эндоцитоз – проникновение веществ внутрь бактерии;
  • экзоцитоз – выведение отходов.

В процессе эндоцитоза мембрана образует внутренние складки, которые затем трансформируются в пузырьки (вакуоли). В зависимости от выполняемых функций различают два вида эндоцитоза:

  1. Фагоцитоз («поедание»). Эта функция доступна некоторым видам бактерий, их называют фагоцитами. Такие клетки создают из цитоплазматической мембраны своеобразный мешок, обволакивающий поглощаемую частицу (фагоцитозную вакуоль). Примером могут служить лейкоциты крови, «съедающие» чужеродные частицы или бактерии.
  2. Пиноцитоз («выпивание») – это поглощение жидкостей. При этом образуются пузырьки различного размера, иногда очень мелкие.

Экзоцитоз (выведение) действует в противоположном направлении. С его помощью из клетки выводятся непереваренные остатки и клеточный секрет.

Помимо этого, цитоплазматическая мембрана:

  • регулирует давление жидкости внутри клетки;
  • принимает и обрабатывает химическую информацию извне;
  • участвует в процессе деления клетки;
  • отвечает за отращивание жгутиков и их движение;
  • регулирует синтез клеточной стенки.

Внутренняя бактериальная мембрана в зависимости от выполняемых клеткой функций образует мезосомы (внутренние складки). Примером могут служить ламеллы и тилакоиды в одноклеточных, живущих за счет фотосинтеза. Тилакоиды представляют собой стопки плоских мешочков, образованных внутренними складками мембраны (мезосомами), в которых протекает фотосинтез, а ламеллы – это те же вытянутые в длину мезосомы, соединяющие между собой стопки тилакоидов.

У грамположительных бактерий мезосомы хорошо развиты и довольно сложно организованы, в отличие от грамположительных. Различают три вида мезосом:

  • пластинчатые (ламеллы);
  • пузырьки (везикулы с запасом питательных веществ);
  • трубочки (тубулярные мезосомы).

Микробиологи пока не пришли к окончательному выводу – являются ли мезосомы основной структурой бактериальной клетки или только усиливают выполняемые ею функции.

Рибосомы – основа белковой жизни

Цитоплазма бактерий – внутренняя полужидкая (коллоидная) составляющая клетки, в которой находятся все органоиды (нуклеоид, плазмиды, мезосомы и прочие включения). Одна из основных функций цитоплазмы – создавать комфортные условия для рибосом.

Рибосома – важнейший немембранный органоид клетки, состоящий из двух частей: большой и малой субъединиц (полипептидов, составляющих белковый комплекс). Функция рибосом – синтез белка в клетке. Рибосомы – это рибонуклеопротеиновые частицы размером примерно до 20 нм. В клетке их может одновременно быть от 5 000 до 90 000. Это самые маленькие и самые многочисленные органоиды прокариот. Большая часть бактериальной РНК расположена именно в рибосомах, кроме того, в их состав входят белки.

Рибосомы отвечают за синтез белков из аминокислот. Процесс протекает по схеме, заложенной в генетической информации РНК. Считается, что эволюция рибосом началась в добелковую эру. Со временем аппарат биосинтеза совершенствовался, но основную функцию в нем продолжает играть РНК. Таким образом, рибосомы – поставщики основного компонента жизнедеятельности белковых форм – сами опираются на РНК, а не на белковую составляющую.

Проблема зарождения жизни на Земле представляет своеобразный парадокс – ДНК (дезоксирибонуклеиновая кислота), несущая генетическую информацию, не может сама себя размножить, ей нужен некий катализатор, а белки, отличный катализатор, не могут образоваться без ДНК. Возникает парадокс: курицы и яйца или «что было раньше?».

Оказалось, в начале была РНК (рибонуклеиновая кислота)! Все ключевые стадии биосинтеза белка (передачу информации, работу катализатора, транспорт аминокислот) взяла на себя РНК, составляющая основу рибосом. Это послужило одним из доказательств существования жизни «до ДНК». Гипотеза о «мире РНК» пока не нашла экспериментального подтверждения, но исследования нуклеиновых кислот остаются одним из самых «горячих» направлений науки.

Дополнительные структуры прокариот

Как любое живое существо, бактериальная клетка стремится обезопасить себя, создавая различные дополнительные элементы. К поверхностным структурам относятся:

  1. Капсула. Это поверхностный слизистый слой, образующийся вокруг клетки как реакция на окружающую среду. Капсула не только дает бактерии дополнительную защиту, но и может содержать запас питательных веществ «на черный день».
  2. Жгутики. Длинные (длиннее самой клетки) очень тонкие нити, прикрепленные к ЦПМ и стенке, работают моторчиком для свободного перемещения бактерий. Могут располагаться по всей поверхности бактерии или расти пучками по ее краям.
  3. Пили (ворсинки). Они отличаются от жгутиков размерами (тоньше и намного короче). В функции пилей не входит перемещение, но они отвечают за крепление (привязку) бактерий к другим микроорганизмам или поверхностям. Еще пили участвуют в водно-солевом обмене и питательном процессе.
  4. Споры. Это гарантия для микроорганизмов пережить любые неблагоприятные факторы (отсутствие воды или пищи, агрессивная среда). Они образуются внутри бактерий, в основном грамположительных. Однако этот способ обеспечивает только выживание, но не размножение (как в случае грибных спор).

Внутренние дополнительные включения могут быть как активными (хлоросомы фотосинтезирующих клеток), так и пассивными (запасы питания). У бактерий, живущих в воде, есть газовые вакуоли, крохотные пузырьки воздуха, отвечающие за их плавучесть.

Питательные вещества бактерий откладываются в различных гранулах (липиды, волютин). Липиды обеспечивают бактерию запасом углерода, дающим энергию в отсутствии других источников. Волютин (зерна, содержащие полифосфаты), становится источником фосфора, когда в окружающей среде его недостаточно. Запасы волютина тоже могут служить источником энергии, хотя их роль не так значительна. Дополнительными структурами цианобактерий являются запасы азота, для серобактерий – отложения молекулярной серы. Основная характеристика всех включений с запасами «на черный день» – они обязательно изолированы от цитоплазмы и не могут оказывать на клетку воздействие в нормальных условиях. В противном случае может быть передозировка химических элементов и бактерия пострадает.

Структуры бактериальной клетки, как основные, так и дополнительные, четко выполняют свои функции, сохраняя и продлевая ее жизнеспособность. Информация, содержащаяся в РНК и ДНК прокариот, позволяет клетке быстро реагировать на изменение условий существования и принимать необходимые меры для сохранения микроорганизма и успешного выполнения всех функций, заложенных в него природой.

Самое очевидное отличие прокариот от эукариот заключается в наличии у последних ядра , что отражено в названии этих групп: «карио» с древнегреческого переводится как ядро, «про» - до, «эу» - хорошо. Отсюда прокариоты - это доядерные организмы, эукариоты - ядерные.

Однако это далеко не единственное и возможно не главное отличие прокариотических организмов от эукариот . В клетках прокариот вообще нет мембранных органоидов (за редким исключением) - митохондрий, хлоропластов, комплекса Гольджи, эндоплазматической сети, лизосом. Их функции выполняют выросты (впячивания) клеточной мембраны, на которых располагаются различные пигменты и ферменты, обеспечивающие процессы жизнедеятельности.

У прокариот нет характерных для эукариот хромосом. Их основной генетический материал - это нуклеоид , обычно имеющий форму кольца. В эукариотических клетках хромосомы представляют собой комплексы ДНК и белков-гистонов (играют важную роль в упаковке ДНК). Эти химические комплексы называются хроматином . Нуклеоид прокариот не содержит гистонов, а форму ему придают связанные с ним молекулы РНК.

Хромосомы эукариот находятся в ядре. У прокариот нуклеоид находится в цитоплазме и обычно крепится в одном месте к мембране клетки.

Кроме нуклеоида в прокариотических клетках бывает разное количество плазмид - нуклеоидов существенно меньшего размера, чем основной.

Количество генов в нуклеоиде прокариот на порядок меньше, чем в хромосомах. У эукариот есть множество генов, выполняющих регуляторную функцию по отношению к другим генам. Это дает возможность эукариотическим клеткам многоклеточного организма, содержащим одну и ту же генетическую информацию, специализироваться; изменяя свой метаболизм, более гибко реагировать на изменения внешней и внутренней среды. Отличается и структура генов. У прокариот гены в ДНК располагаются группами - оперонами. Каждый оперон транскрибируется как единое целое.

Отличия прокариот от эукариот есть и в процессах транскрипции и трансляции. Самое главное заключается в том, что в прокариотических клетках эти процессы могут протекать одновременно на одной молекуле матричной (информационной) РНК: в то время как она еще синтезируется на ДНК, на готовом ее конце уже «сидят» рибосомы и синтезируют белок. В эукариотических клетках мРНК после транскрипции претерпевает так называемое созревание. И только после этого на ней может синтезироваться белок.

Рибосомы прокариот меньше (коэффициент седиментации 70S), чем у эукариот (80S). Отличается количество белков и молекул РНК в составе субъединиц рибосом. Следует отметить, что рибосомы (а также генетический материал) митохондрий и хлоропластов схожи с прокариотами, что может говорить об их происхождении от древних прокариотических организмов, оказавшихся внутри клетки-хозяина.

Прокариоты отличаются обычно более сложным строением своих оболочек. Кроме цитоплазматической мембраны и клеточной стенки у них также имеется капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид). Среди эукариот клеточная стенка есть у растений (ее основной компонент - целлюлоза), у грибов - хитин.

Прокариотические клетки делятся бинарным делением. У них нет сложных процессов клеточного деления (митоза и мейоза) , характерных для эукариот. Хотя перед делением нуклеоид удваивается, так же как хроматин в хромосомах. В жизненном цикле эукариот наблюдается чередование диплоидной и гаплоидной фаз. При этом обычно преобладает диплоидная фаза. В отличие от них у прокариот такого нет.

Клетки эукариот различны по размерам, но в любом случае существенно крупнее прокариотических (в десятки раз).

Питательные вещества в клетки прокариот поступают только с помощью осмоса. У эукариотических клеток кроме этого может также наблюдаться фаго- и пиноцитоз («захват» пищи и жидкости с помощью цитоплазматической мембраны).

В целом отличие прокариот от эукариот заключается в однозначно более сложном строении последних. Считается, что клетки прокариотического типа возникли путем абиогенеза (длительной химической эволюции в условиях ранней Земли). Эукариоты появились позже от прокариотов, путем их объединения (симбиотическая, а также химерная гипотезы) или эволюции отдельно взятых представителей (инвагинационная гипотеза). Сложность клеток эукариот позволила им организовать многоклеточный организм, в процессе эволюции обеспечить все основное разнообразие жизни на Земле.

Таблица отличий прокариот от эукариот

Признак Прокариоты Эукариоты
Клеточное ядро Нет Есть
Мембранные органоиды Нет. Их функции выполняют впячивания клеточной мембраны, на которых располагаются пигменты и ферменты. Митохондрии, пластиды, лизосомы, ЭПС, комплекс Гольджи
Оболочки клетки Более сложные, бывают различные капсулы. Клеточная стенка состоит из муреина. Основной компонент клеточной стенки целлюлоза (у растений) или хитин (у грибов). У клеток животных клеточной стенки нет.
Генетический материал Существенно меньше. Представлен нуклеоидом и плазмидами, которые меют кольцевую форму и находятся в цитоплазме. Объем наследственной информации значительный. Хромосомы (состоят из ДНК и белков). Характерна диплоидность.
Деление Бинарное деление клетки. Есть митоз и мейоз.
Многоклеточность Для прокариот не характерна. Представлены как одноклеточными, так и многоклеточными формами.
Рибосомы Мельче Крупнее
Обмен веществ Более разнообразный (гетеротрофы, фотосинтезирующие и хемосинтезирующие различными способами автотрофы; анаэробное и аэробное дыхание). Автотрофность только у растений за счет фотосинтеза. Почти все эукариоты аэробы.
Происхождение Из неживой природы в процессе химической и предбиологической эволюции. От прокариот в процессе их биологической эволюции.

Для бактерий и сине-зеленых водорослей, которых принято причислять к классу прокариот (то есть доядерных живых организмов), характерно наличие бактериальной хромосомы. Это условное название, за которым скрывается единственная кольцевая молекула ДНК. Она имеется у всех клеток прокариот, располагается непосредственно в цитоплазме, не имея защитной оболочки.

Как становится понятным из определения прокариот, основное качество их строения заключается в отсутствии ядра. Кольцевая молекула ДНК отвечает за сохранность и передачу всей информации, которая понадобится новой клетке, созданной в процессе деления. Структура цитоплазмы очень плотная и она неподвижна. В ней нет ряда органоидов, которые выполняют важные функции в клетках эукариот:

  • митохондрий,
  • лизосом,
  • эндоплазматической сети,
  • пластидов,
  • комплекса Гольджи.

В цитоплазме хаотично расположены рибосомы, которые «заняты» на производстве белков. Немаловажной является миссия по производству энергии. Ее синтез происходит в митохондриях, но строение бактерий исключает их наличие. Поэтому функцию данных органоидов взяла на себя именно цитоплазма.

В митохондриях имеется одна особенность, делающая их несколько схожими с бактериями, – в них хранится митохондриальная ДНК. Ее строение напоминает бактериальные хромосомы. ДНК в митохондриях собрана в отдельный кольцевой нуклеоид. Некоторые особо длинные органоиды могут содержать до десяти таких молекул. Когда в подобных митохондриях начинается процесс деления, то от них отделяется участок, содержащий в себе один нуклеоид. И в этом можно также найти сходство с бинарным делением бактерий.

Геном микроорганизмов

Процесс самовоспроизведения, во время которого происходит копирование важных данных из одного источника на другой, называют репликацией. Результатом этого действия (свойственного в том числе и для клеток бактерий) является создание себе подобной структуры. Участниками репликации (репликонами) у прокариотов считаются:

  • кольцевая молекула ДНК,
  • плазмиды.

Нуклеотиды ДНК у клеток бактерий расположены в определенной последовательности. Такое строение позволяет выстроить порядок аминокислот в белке. В каждом гене содержится уникальное число и расстановка нуклеотидов.

Все свойства и особенности прокариот определены их комплексом генов (генотипом). Если вести речь о микроорганизмах, то для них генотип и геном являются практически синонимами.

Фенотип является результатом взаимодействия совокупности генов и условий обитания. Он находится в зависимости от конкретных условий окружающей среды, но контролируется непосредственно генотипом. Это обусловлено тем, что все возможные изменения уже определены набором генов, составляющим участок кольцевой молекулы ДНК.

Генотип может меняться не только в зависимости от влияния окружающей среды. К его модификации могут приводить различные мутации или перестановки генов в строении молекулы ДНК. Исходя из этого, выделяют ненаследственную (средовую) изменчивость и наследственную (модификационную) форму изменений генотипа. Если нуклеотиды в кольцевой молекуле ДНК перестроились или были частично утеряны под воздействием мутации, то такое строение будет необратимым. А когда «виновником» изменений становятся факторы окружающей среды, то с их устранением исчезнут и вновь приобретенные качества.

Бактериальная хромосома

Кольцевая молекула ДНК в клетках различных представителей класса бактерий отличается по размерам. Но имеет схожее строение, как и функции, во всех случаях.

  1. Бактериальная хромосома у прокариотов всегда одна.
  2. Она находится в цитоплазме.
  3. Если в клетках у эукариотов молекула ДНК имеет линейное строение и считается более длинной (в ней имеется до 1010 пар оснований), то у бактерий она замкнута в кольцо. И еще бактериальная хромосома прокариот короче (5106 пар оснований).
  4. В одной кольцевой молекуле ДНК находится информация обо всех нужных функциях для жизнедеятельности бактерий. Эти гены можно поделить на 10 групп (по принципу процессов, которые они контролируют в клетке). Можно отобразить данную классификацию в виде таблицы.
Процессы жизнедеятельности в клетках прокариот Число изученных генов, которые находятся в клетке бактерий и отвечают за определенные процессы
Доставка клетке различных соединений и питательных веществ 92
Проведение синтеза фосфолипидов, жирных и аминокислот, нуклеотидов, витаминов и других соединений 221
Организация работы аппарата по синтезу белков 164
Синтез оболочки 42
Расщепление сложных органических веществ и другие реакции для выработки энергии 138
Катаболизм (переработка, расщепление) макромолекул белков, углеводов и жиров 22
Способность направленного движения к полезным веществам и от раздражителя (хемотаксис), подвижность бактерий в целом 39
Выработка АТФ (универсальная форма химической энергии, присущая любой живой клетке). Как упоминалось ранее, данный процесс у эукариотов протекает в митохондриях и является для этих органоидов основным родом деятельности 15
Репликация нуклеиновых кислот, в том числе и генов 49
Иные гены, в том числе и с неизученными функциями 110

Вообще, одна хромосома способна нести в себе около 1000 известных генов.

Плазмиды

Еще одним репликоном прокариот являются плазмиды. У бактерий они представляют собой молекулы ДНК, имеющие строение в виде двух цепочек, замкнутых в кольцо. В отличие от бактериальной хромосомы они отвечают за кодирование тех «умений» бактерии, которые помогут ей выжить, если вдруг она окажется в неблагоприятных условиях для существования. Они могут автономно воспроизводить себя, поэтому в цитоплазме может быть несколько копий плазмид.

Трансмиссивные репликоны способны передаваться из одной клетки в другую. Они несут в своей кольцевой молекуле ДНК некоторые признаки, которые причисляют к категории фенотипических изменений:

  • выработка устойчивости к антибиотикам;
  • способность продуцировать колицины (белковые вещества, способные уничтожать микроорганизмы того же рода, что послужили источником их возникновения);
  • переработка сложных органических веществ;
  • синтез антибиотических веществ;
  • способность проникать в организм и вызывать заболевания;
  • возможность преодолевать защитные механизмы, размножаться и распространяться в организме;
  • умение вырабатывать токсины.

Последние три «навыка» называют факторами патогенности, знания о которых содержит в себе кольцевая молекула ДНК плазмид. Именно благодаря этим факторам болезнетворные бактерии становятся опасными для человеческого организма.

Таким образом, кольцевая молекула ДНК, имеющаяся у всех прокариот, одна несет в себе целый комплекс навыков, полезных для их выживания и жизнедеятельности.

gastroguru © 2017