Какую частицу называют положительным ионом. Что такое ионы - большая медицинская энциклопедия. Ионные реакции в растворе

Практически все видели рекламу так называемой «люстры Чижевского», от которой отрицательные ионы в воздухе увеличиваются количественно. Однако после школы далеко не все точно помнят само Ионы - это заряженные частицы, утратившие свойственную нормальным атомам нейтральность. А теперь немного подробнее.

«Неправильные» атомы

Как вы знаете, номер в таблице великого Менделеева, связан с количеством протонов в ядре атома. Почему же не электронов? Потому что количество и комплектность электронов, хоть и влияет на свойства атома, но не определяет его фундаментальных свойств, связанных с ядром. Электронов может не хватать, а может быть слишком много. Ионы - это как раз атомы с «неправильным» количеством электронов. Причем парадоксальным образом положительными называются имеющие недостаток электронов, а отрицательными - избыток.

Немного о названиях

Как возникают ионы? Это простой вопрос - путей образования всего два. Либо химический путь, либо физический. В результате может получиться положительный ион, который нередко называют катионом, а отрицательный, соответственно, анионом. Дефицит или избыток заряда может иметь атом-одиночка или целая молекула, которая тоже считается ионом особого многоатомного типа.

Стремление к стабильности

Если происходит ионизация среды, к примеру, газа, то в ней существуют количественно пропорциональные соотношения электронов и положительных ионов. Но такое явление встречается редко (во время грозы, возле пламени), газ в таком измененном состоянии существует недолго. Поэтому в целом, близко к земле способные к реакции ионы воздуха - редкость. Газ - среда очень быстро меняющаяся. Как только действие ионизующих факторов прекращается, ионы встречаются друг с другом и вновь становятся нейтральными атомами. Это их нормальное состояние.

Агрессивная жидкость

Ионы в больших количествах могут содержаться в воде. Дело в том, что молекулы воды - частицы, в которых распространен по молекуле неравномерно, они представляют собой диполи, имеющие с одной стороны положительный заряд, с другой - отрицательный.

И когда в воде появляется растворимое вещество, молекулы воды своими полюсами электрически воздействуют на добавленное вещество, ионизируя его. Хорошим примером является морская вода, в которой множество веществ существует в такой форме, как ионы. Это известно людям достаточно давно. В атмосфере выше определенной точки ионов очень много, эта оболочка называется ионосферой. разрушает стабильные атомы и молекулы. Частицы в ионизированном состоянии могут придавать всему веществу. Пример - яркие необычные цвета драгоценных камней.

Ионы - это основа жизни, потому что базовый процесс получения энергии из АТФ невозможен без создания электрически нестабильных частиц, само основано на взаимодействиях ионов и множества химических процессов, катализируемых ферментами, происходит только благодаря ионизации. Неудивительно, что некоторые вещества в этом состоянии человек принимает внутрь. Классический пример - полезные ионы серебра.

ИОНЫ (от греч. - идущий), одноатомные или многоатомные частицы, несущие электрич. заряд, напр. Н + , Li + , Аl 3+ , NH 4 + , F - , SO 4 2 - . Положительные ионы называют катионами (от греч. kation, буквально - идущий вниз), отрицательные - а н и о н а м и (от греч. anion, буквально идущий вверх). В своб. состоянии существуют в газовой фазе (в плазме). Положительные ионы в газовой фазе можно получить в результате отрыва одного или неск. электронов от нейтральных частиц при сильном нагреве газа , действии электрич. разряда, ионизирующих излучений и др. Поглощаемую при образовании однозарядного положит. иона энергию называют первым потенциалом ионизации (или первой энергией ионизации), для получения двухзарядного иона из однозарядного затрачивается вторая энергия ионизации и т. д. Отрицат. ионы образуются в газовой фазе при присоединении к частицам своб. электронов , причем нейтральные атомы могут присоединять не более одного электрона ; отрицат. многозарядные одноатомные ионы в индивидуальном состоянии не существуют. Выделяющаяся при присоединении электрона к нейтральной частице энергия наз. сродством к электрону . В газовой фазе ионы могут присоединять нейтральные молекулы и образовывать ионмолекулярные комплексы. См. также Ионы в газах . В конденсир. фазах ионы находятся в ионных кристаллич. решетках и ионных расплавах ; в р-рах электролитов имеются сольватир. ионы, образовавшиеся в результате электролитич. диссоциации растворенного в-ва. В конденсир. фазе ионы интенсивно взаимодействуют (связаны) с окружающими их частицами - ионами противоположного знака в кристаллах и в расплавах , с нейтральными молекулами - в р-рах. Взаимод. происходит по кулоновскому, ион-дипольному, донорно-акцепторному механизмам. В р-рах вокруг ионов образуются сольватные оболочки из связанных с ионами молекул р-рителя (см. Гидратация , Сольватация). Представление об ионах в кристаллах - удобная идеализир. модель, т.к. чисто ионной связи никогда не бывает, напр., в кристаллич. NaCl эффективные заряды атомов Na и Сl равны соотв. приблизительно +0,9 и -0,9. Св-ва ионов в конденсир. фазе значительно отличаются от св-в тех же ионов в газовой фазе. В р-рах существуют отрицательные двухзарядные одноатомные ионы . В конденсир. фазе имеется множество разл. многоатомных ионов - анионы кислородсодержащих к-т, напр. NO 3 - , SO 4 2 - , комплексные ионы, напр. 3+ , 2 - , кластерные ионы 2+ и др. (см. Кластеры), ионы полиэлектролитов и др. В р-ре ионы могут образовывать ионные пары . Термодинамич. характеристики - D H 0 обр, S 0 , D G 0 обр индивидуальных ионов известны точно только для ионов в газовой фазе. Для ионов в р-рах при эксперим. определении всегда получают сумму значений термодинамич. характеристик для катиона и аниона . Возможен теоретич. расчет термодинамич. величин индивидуальных ионов, но его точность пока меньше точности эксперим. определения суммарных значений, поэтому для практич. целей пользуются условными шкалами термодинамич. характеристик индивидуальных ионов в р-ре, причем обычно принимают величины термодинамич. характеристик Н + равными нулю. Осн. структурные характеристики ионов в конденсир. фазе -радиус и координац. число. Было предложено много разл. шкал радиусов одноатомных ионов. Часто используются т. наз. физ. радиусы ионов, найденные К. Шенноном (1969) по эксперим. данным о точках минимума электронной плотности в кристаллах . Координац. числа одноатомных ионов в осн. лежат в пределах 4-8. И оны участвуют во множестве разнообразных р-ций. Часто бывают катализаторами , промежут. частицами в хим. р-циях, напр., при гетеролитических реакциях . Обменные ионные р-ции в р-рах электролитов обычно протекают практически мгновенно. В электрич. поле ионы переносят электричество: катионы - к отрицат. электроду (катоду), анионы - к положительному (аноду); одновременно происходит перенос в-ва, к-рый играет важную роль в

Электрохимия. Электролиз. Гальванические элементы

Химическая термодинамика, система, энтальпия

Сколько времени займёт реакция? Что влияет на скорость реакции?

Равновесие обратимых реакций. Принцип Ле Шателье. Влияние внешних факторов на равновесие

Мера беспорядка, энергия вселенной, свободная энергия Гиббса

Основные классы химических соединений. Классификация

Ион - это заряженная частица, образованная из молекулы или атома путём потери или приобретения одного электрона. Отсюда следует, что в ионе количество протонов не равно количеству электронов. После изучения статьи Вы узнаете, какими бывают заряженные частицы, что такое ионы, катионы и анионы, также Вы сможете по номеру элемента узнать, каким зарядом он может обладать.

Число электронов в ионе

Количество электронов в нейтральном атоме равно количеству протонов в ядре, например, у хрома (24 Cr) 24 протона, соответствено, вокруг ядра вращается 24 электрона. Как было рассказано в статье , каждый электрон двигается по некой орбитали, то есть обладает заданным количеством энергии.

Если ион образован из-за потери электрона, то заряд иона становится положительным (электрон имеет отрицательный заряд), схема для запоминания:

24 Cr - e - = 24 Cr + e + = 24 Cr +
24 Cr - 3e - = 24 Cr + 3e + = 24 Cr 3+

Аналогично при присоединении электрона:

24 Cr + e - = 24 Cr - e + = 24 Cr -
24 Cr + 3e - = 24 Cr - 3e + = 24 Cr 3-

Энергия ионизации

Если электрону сообщить достаточное количество энергии, то электрон "оторвётся" от атома. Чем ближе электрон к ядру - тем сложнее его отрывать, а значит, больше энергии необходимо передать. Энергия, необходимая для отрыва электрона, называется энергией ионизации или ионизационный потенциал (I). Значения I затабулированы и могут быть найдены в различных справочниках.

# Элемент Название кДж/моль
1 H Водород 1312
2 He Гелий 2373
3 Li Литий 520
4 Be Бериллий 899.5
5 B Бор 801
6 C Углерод 1086
7 N Азот 1402
8 O Кислород 1314
9 F Фтор 1681
10 Ne Неон 2080.7
11 Na Натрий 495
12 Mg Магний 738
13 Al Алюминий 578
14 Si Кремний 787
15 P Фосфор 1012
16 S Сера 1000
17 Cl Хлор 1251
18 Ar Аргон 1520.6
19 K Калий 418.8
20 Ca Кальций 590
21 Sc Скандий 633.1
22 Ti Титан 658.8
23 V Ванадий 650.9
24 Cr Хром 652.9
25 Mn Марганец 717.3
26 Fe Железо 762.5
27 Co Кобальт 760.4
28 Ni Никель 737.1
29 Cu Медь 745.5
30 Zn Цинк 906.4
31 Ga Галлий 578.8
32 Ge Германий 762
33 As Мышьяк 947
34 Se Селен 941
35 Br Бром 1142
36 Kr Криптон 1350.8
37 Rb Рубидий 403
38 Sr Стронций 549
39 Y Иттрий 600
40 Zr Цирконий 640.1
41 Nb Ниобий 652.1
42 Mo Молибден 684.3
43 Tc Технеций 702
44 Ru Рутений 710.2
45 Rh Родий 719.7
46 Pd Палладий 804.4
47 Ag Серебро 731
48 Cd Кадмий 867.8
49 In Индий 558.3
50 Sn Олово 709
51 Sb Сурьма 834
52 Te Теллур 869
53 I Иод 1008
54 Xe Ксенон 1170.4
55 Cs Цезий 375.7
56 Ba Барий 503
57 La Лантан 538.1
58 Ce Церий 534.4
59 Pr Празеодим 527
60 Nd Неодим 533.1
61 Pm Прометий 540
62 Sm Самарий 544.5
63 Eu Европий 547.1
64 Gd Гадолиний 593.4
65 Tb Тербий 565.8
66 Dy Диспрозий 573
67 Ho Гольмий 581
68 Er Эрбий 589.3
69 Tm Тулий 596.7
70 Yb Иттербий 603.4
71 Lu Лютеций 523.5
72 Hf Гафний 658.5
73 Ta Тантал 761
74 W Вольфрам 770
75 Re Рений 760
76 Os Осмий 840
77 Ir Иридий 880
78 Pt Платина 870
79 Au Золото 890.1
80 Hg Ртуть 1007.1
81 Tl Таллий 589.4
82 Pb Свинец 715.6
83 Bi Висмут 703
84 Po Полоний 812.1
85 At Астат 890
86 Rn Радон 1037
87 Fr Франций 380
88 Ra Радий 509.3
89 Ac Актиний 499
90 Th Торий 587
91 Pa Протактиний 568
92 U Уран 597.6
93 Np Нептуний 604.5
94 Pu Плутоний 584.7
95 Am Америций 578
96 Cm Кюрий 581
97 Bk Берклий 601
98 Cf Калифорний 608
99 Es Эйнштейний 619
100 Fm Фермий 627
101 Md Менделевий 635
102 No Нобелий 642
103 Lr Лоуренсий 470
104 Rf Резерфордий 580
Таблица 1. Энергия ионизации, справочные данные

Энергия сродства электрону

Также электроны могут присоединяться к атому, в процессе присоединения электрон выделяет энергию, такая энергия называется энергией сродства электрону , для каждого электрона конкретного атома энергия сродства численно равна и противоположна по знаку энергии ионизации, например, 17 Cl, что бы оторвать 17й электрон у атома хлора, необходимо сообщить ему 13 эВ, любой другой электрон, который присоединится на место 17го электрона также выделит 13 эВ.

Катионы и анионы

Атомы, в которых количество протонов не равно количеству электронов называются ионами, поскольку электрон имеет отрицательный заряд, то если электронов больше протонов, то суммарный заряд отрицательный: S 2- означает, что в данном атоме серы количество электронов больше чем протонов на два электрона. Соответственно, если электронов меньше чем протонов, то суммарный заряд положительный и обозначается H + . Отрицательно заряженные атомы называются анионами , положительно заряженные атомы - катионами .

Какой заряд будет у атома?

Теоретически возможно отобрать все электроны у атома, но это возможно только в лабораторных условиях и за пределами лаборатории атомы в таком состоянии находиться не будут, почему?

Вернёмся к устройству электронной оболочки. Вокруг атома электроны сгруппированы по энергетическим уровням, каждый заполненный уровень экранирует ядро и является более стабильным, нежели не до конца заполненный уровень. То есть электронная конфигурация стремиться к состоянию заполненного подуровня: если на p-оболочке находится 5 электронов, то вероятнее атом примет один электрон, нежели отдаст пять. Так, например, у атома хлора, пять электронов на 3p-подуровне, энергия сродства хлора - 3.61 эВ, энергия ионизации - 13 эВ. У натрия на последнем подуровне один электрон, энергия сродства - 0,78 эВ, потенциал ионизации - 0,49 эВ, поэтому вероятнее натрий отдаст один электрон, нежели примет его.

Зная потенциал ионизации и энергию сродства мы можем сделать предположение о взаимодействии веществ. Если смешать натрий и хлор, и сообщить им энергию, то вероятнее всего Na будет отдавать один электрон Cl и в результате получится смесь ионов Na + и Cl - .

Пример

Так можно по номеру элемента предположить, какой заряд он будет иметь, например, 19й элемент, электронная конфигурация - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 , вероятнее всего, такой элемент может либо отдать, либо принять один электрон. У 27го элемента электронная конфигурация выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7 , у d-подуровня всего может быть 10 атомов, т.е. либо атом примет 1,2 или 3 электрона, либо отдаст 1,2,3...7 электронов, так, вероятнее, он примет 3, т.е. возможные состояния - это +1, +2 и +3,

Теперь Вы знаете, что такое ионы, осталось изучить химическую связи и Вы сможете составлять окислительно-восстановительные реакции!

Впервые термин "ион" был введен в 1834 году, в чем заслуга Майкла Фарадея. После изучения действия электрического тока на растворы солей, щелочей и кислот он пришел к выводу, что в них содержатся частицы, имеющие некий заряд. Катионами Фарадей назвал ионы, которые в электрическом поле двигались к катоду, имеющему отрицательный заряд. Анионы - отрицательно заряженные неэлементарные ионные частицы, которые в электрическом поле движутся к плюсу - аноду.

Данная терминология применяется и сейчас, а частицы изучаются далее, что позволяет рассматривать химическую реакцию как результат электростатического взаимодействия. Многие реакции протекают по этому принципу, что позволило понять их ход и подобрать катализаторы и ингибиторы для ускорения их протекания и для угнетения синтеза. Также стало известно, что многие вещества, особенно в растворах, всегда находятся в виде ионов.

Номенклатура и классификация ионов

Ионы - это заряженные атомы или группа атомов, которая в ходе химической реакции потеряла или приобрела электроны. Они составляют внешние слои атома и могут теряться из-за низкой силы притяжения ядра. Тогда результатом отсоединения электрона является положительный ион. Также если атом имеет сильный ядерный заряд и узкую электронную оболочку, ядро является акцептором дополнительных электронов. В результате этого образуется отрицательная ионная частица.

Сами ионы - это не только атомы с избыточной или недостаточной электронной оболочкой. Это может быть и группа атомов. В природе чаще всего существуют именно групповые ионы, которые присутствуют в растворах, биологических жидкостях тел организмов и в морской воде. Имеется огромное количество видов ионов, названия которых вполне традиционны. Катионы - это ионные частицы, заряженные положительно, а заряженные отрицательно ионы - это анионы. В зависимости от состава их называют по-разному. Например, катион натрия, катион цезия и другие. Анионы называются по-другому, так как чаще всего состоят из многих атомов: сульфат-анион, ортофосфат-анион и другие.

Механизм образования ионов

Химические элементы в составе соединений редко являются электрически нейтральными. То есть они почти никогда не находятся в состоянии атомов. В образовании ковалентной связи, которая считается самой распространенной, атомы также имеют некий заряд, а электронная плотность смещается вдоль связей внутри молекулы. Однако заряд иона здесь не формируется, потому как энергия ковалентной связи меньше, нежели энергия ионизации. Потому, несмотря на различную электроотрицательность, одни атомы не могут полностью притянуть электроны внешнего слоя других.

В ионных реакциях, где разница электроотрицательности между атомами достаточно большая, один атом может забирать электроны внешнего слоя у другого атома. Тогда созданная связь сильно поляризуется и разрывается. Затраченная на это энергия, которая создает заряд иона, называется энергией ионизации. Для каждого атома она различная и указывается в стандартных таблицах.

Ионизация возможна только в том случае, когда атом или группа атомов способен либо отдавать электроны, либо акцептировать их. Чаще всего это наблюдается в растворе и кристаллах солей. В кристаллической решетке также присутствуют почти неподвижные заряженные частицы, лишенные кинетической энергии. А поскольку в кристалле нет возможности для передвижения, то реакция ионов протекают чаще всего в растворах.

Ионы в физике и химии

Физики и химики активно изучают ионы по нескольким причинам. Во-первых, эти частицы присутствуют во всех известных агрегатных состояниях вещества. Во-вторых, энергию отрыва электронов от атома можно измерить, чтобы использовать это в практической деятельности. В-третьих, в кристаллах и растворах ионы ведут себя по-разному. И, в-четвертых, ионы позволяют проводить электрический ток, а физико-химические свойства растворов меняются в зависимости от концентраций ионов.

Ионные реакции в растворе

Сами растворы и кристаллы следует рассмотреть детальнее. В кристаллах солей существуют отдельно расположенные положительные ионы, к примеру, катионы натрия и отрицательные, анионы хлора. Структура кристалла удивительна: за счет сил электростатического притяжения и отталкивания ионы ориентируются особым образом. В случае с хлоридом натрия они образуют так называемую алмазную кристаллическую решетку. Здесь каждый натриевый катион окружен 6 хлоридными анионами. В свою очередь, каждый хлоридный анион окружает 6 анионов хлора. Из-за этого простая поваренная соль и в холодной и горячей воде растворяется почти с одинаковой скоростью.

В растворе тоже не существует цельной молекулы хлорида натрия. Каждый из ионов здесь окружается диполями воды и хаотично передвигается в ее толще. Наличие зарядов и электростатических взаимодействий приводит к тому, что солевые растворы воды замерзают при температуре чуть меньше нуля, а кипят при температуре выше 100 градусов. Более того, если в растворе присутствуют другие вещества, способные вступить в химическую связь, то реакция протекает не с участием молекул, а ионов. Это создало учение о стадийности химической реакции.

Те продукты, которые получаются в конце, не образуются сразу в ходе взаимодействия, а постепенно синтезируются из промежуточных продуктов. Изучение ионов позволило понять, что реакция протекает как раз по принципам электростатических взаимодействий. Их результатом является синтез ионов, которые электростатически взаимодействуют с другими ионами, создавая конечный равновесный продукт реакции.

Резюме

Такая частица, как ион, это электрически заряженный атом или группа атомов, которая получается в ходе потери или приобретения электронов. Самым простым ионом является водородный: если он теряет один электрон, то представляет собой лишь ядро с зарядом +1. Он обуславливает кислую среду растворов и сред, что важно для функционирования биологических систем и организмов.

Ионы могут иметь как положительные, так и отрицательные заряды. За счет этого в растворах каждая частица вступает в электростатическое взаимодействие с диполями воды, что также создает условия для жизни и передачи сигналов клетками. Более того, в ионные технологии развиваются дальше. К примеру, созданы ионные двигатели, которыми оснащалось уже 7 космических миссий NASA.

ИОНЫ (от греч. ion-идущий,странствующий), атомы или хим. радикалы, несущие электрические заряды.-И с т о р и я. Как установил впервые Фарадей (Faraday), проведение электрического тока в растворах связано с передвижением материальных частиц, несущих электрические заряды. Проводящее электрический ток вещество--электролит- распадается на положительно и отрицательно заряженные радикалы, которые действием электростатических сил притягиваются- первые к катоду, вторые - к аноду. Такие атомы или атомные группы (радикалы), двигающиеся в растворе и переносящие электрические заряды, Фарадей назвал ионами: положительно заряженные ионы (двигающиеся к катоду)-катионами, отрицательные-анионами. В отличие от металлических проводников, в к-рых распространение электричества не связано с пере- носом и разложением вещества, растворы электролитов получили название «проводников второго рода». Фарадей считал, что только при пропускании через раствор гальванического тока действием внешних электрических сил часть молекул электролита расщепляется на ионы. Основатель теории электролитической диссоциации Аррениус (Sv. Arrhenius) на основании огромного экспериментального материала показал, что известная часть молекул электролита постоянно диссоциирована на ионы независимо от того, проводит ли раствор в данный момент электрич. ток. Этим было положено начало представлению о существовании в растворе свободных ионов как стойкого состояния материи. Степень диссоциации /Электролита, указывающая, какая часть его молекул распадается на И., составляет в учении Аррениуса основную величину, характеризующую участие электролита в целом ряде процессов, происходящих в растворах. Дальнейшее развитие современная теория электролитической диссоциации и активности электролитов получила в исследованиях Бьеррума, Дебая и Гюккеля (Bjerrum, De-bye, Htickel) и др. Они показали, что активность электролита помимо определяемого степенью его диссоциации числа свободных И. зависит от возникающих между самими ионами электростатических взаимодействий. Влияние этих электростатических межионных сил позволило объяснить многие особенности растворов электролитов, не укладывавшиеся в рамки классической теории Аррениуса. Творцы ионной теории не имели конкретного представления о структуре И. и о способе соединения в нем материи и заряда. Точно так же не получало достаточного разъяснения основное свойство И.-- его изумительная хим. инертность по сравнению с соответствующим нейтральным атомом. Так, атомы натрия бурно реагируют с водой, разлагая ее с выделением водорода; иод дает специфическую реакцию с крахмалом и т. д. Но раствор NaJ, состоящий из свободных И. натрия и иода, не обнаруживает ни одной из этих реакций до тех пор, пока заряд его ионов не будет уничтожен (как то имеет место при электролизе). Эти важнейшие свойства ионов могли быть поняты лишь в свете современной теории строения атома (см.). Структура иона. Согласно теории Резерфорда и Бора (Rutherford, Bohr) материя построена из положительных и отрицательных электрических зарядов. Элементарным положительным зарядом является протон, имеющий массу атома водорода, между тем как свободный отрицательный заряд--элрктрон имеет в 1.800 раз меньшую массу. Атом построен из крайне малого центрального положительного ядра, вокруг которого-наподобие планет, движущихся вокруг солнца-по сложной системе орбит вращаются электроны. Атомное ядро состоит из протонов или же из сочетания протонов с меньшим числом электронов. Число положительных зарядов ядра (или же избыток положительных зарядов над числом внутриядерных электронов) равняется числу электронов окружающей ядро оболочки. I Это число равномерно возрастает на единицу по мере перехода от Н (заряд атомного ядра 1) к каждому последующему элементу, соответственно тому порядку, какой они занимают в периодической системе (см.). Окружающая атомное ядро электронная оболочка состоит из ряда последовательных слоев, каждый из к-рых содержит определенное число электронов. Наружный слой может содержать до 8 электронов (исключение составляет первый электронный слой, непосредственно прилегающий к ядру; наибольшее число электронов равно в нем двум). При наличии в наружном слое полного" числа электронов атом приобретает законченную структуру и необычайно устойчивую электронную конфигурацию, а соответственно этому-полную химич. инертность. Это-атомы благородных газов, хим. валентность которых равна нулю. Переход к следующему элементу периодической системы (щелочному металлу) означает добавление нового электрона, располагающегося на новом наружном электронном слое. Продолжающееся у последующих элементов построение атома заканчивается лишь новым устойчивым сочетанием электронов следующего благородного газа. По Косселю (Kos-sel), электронная конфигурация благородного газа (с восьмиэлектронным наружным слоем) представляет устойчивое состояние, к переходу в к-рое стремится атом каждого элемента. Этот переход совершается путем потери или захвата недостающих электронов. Легче всего он происходит у щелочных металлов и галоидов, из которых первым достаточно потерять, а вторым приобрести один электрон, чтобы уподобиться ближайшему благородному газу. Подобно этому и у других элементов число электронов, которое они должны потерять или приобрести, чтобы обнажить или достроить наружный восьмиэлектронный слой, равняется максимальному числу обнаруживаемых ими положительных или отрицательных валентностей. При этом однако нарушается электронейтральность атома, первоначальное равенство его положительных и отрицательных зарядов. Атом превращается в по^ ложительный или отрицательный И., причем заряд последнего по знаку и величине соответствует валентности соответствующего атома или радикала. Электростатическое притяжение противоположно заряженных И. соединяет их в гетерополярную молекулу. В средах, имеющих, как вода, высокую диэлектрическую постоянную, действие электростатических сил ослабляется, и гетеро-полярная молекула вновь распадается на свои ионы. Таким образом каждый И. имеет электронную структуру не того атома, из к-рого он произошел, а ближайшего благородного газа. От последнего он отличается лишь своим зарядом (и той легкостью, с к-рой, теряя его, он вновь превращается в первоначальный элемент). Такой структурой иона вполне объясняется его важнейшее свойство, отмеченное еще Аррениусом: изумительная химическая инертность, составляющая особенность свободного И. в отличие I от того атома, в который он превращается при потере заряда. Приближаясь к структуре устойчивого, химически инертного благородного газа, ионы друг от друга отличаются лишь величиной и распределением своего электрического заряда, т. е. чисто физическими свойствами. В силу этого они и представляют объект по преимуществу физических методов исследования, объект физической химии. Гидратация и размеры И. Важнейшими физ. свойствами И. являются его размеры и величина электрическ. заряда. От соотношения этих величин зависит и плотность заряда, тем большая, чем меньше размеры частицы, несущей данный заряд. Однако если по структуре И., по их электронной модели мы захотели бы составить себе представление об их относительной величине, то допустили бы серьезную ошибку. Ионы Li - , Na", К" и т. п. в воде состоят не только из указанных веществ, но также из значительного количества тесно с ними связанных и совместно движущихся молекул воды. Молекула воды подобно молекуле многих других веществ представляет собой диполь, на противоположных концах к-рого сосредоточены разноименные заряды (на одном полюсе отрицательный заряд кислорода, на другом-положительный заряд водорода). Такие диполи ориентируются вокруг заряженной частицы, притягиваясь к ней своим разноименным полюсом. В результате каждый ион в водном растворе гидратируется, окружается оболочкой, построенной из молекул воды. Чем дальше от центра, тем эта ориентация делается менее точной, постепенно переходя в хаотическое распределение свободных молекул воды. Т. о. гидратация И. обусловлена их электрическим зарядом (Born). В результате гидратации размеры И., как самостоятельно движущейся частицы, могут значительно повышаться, причем нередко ионы, имеющие меньшие атомные размеры, как напр. Li, достигают даже большей величины, чем И., образовавшиеся из более крупных атомов, как К. Отсюда вытекает и другой, не менее парадоксальный вывод, имеющий большое значение для понимания нек-рых проблем клеточной проницаемости: при распаде молекулы на ионы последние (вместе с окружающей их водной обкладкой!) могут иметь ббльшие размеры, чем сама молекула, их диссоциирующая. ПодвижностьИ. Нек-рые действия свойствены И. наравне с нейтральными молекулами. Таково осмотическое давление, зависящее лишь от кинетической энергии растворенных частиц. Другие обусловлены электрическим зарядом, составляющим отличие И. от нейтральной молекулы. К таким свойствам относится электропроводность. Она определяется произведением числа ионных зарядов и подвижности И. Каждый И. движется в электрическом поле со скоростью, пропорциональной действующей на него силе и обратно пропорциональной встречаемому им сопротивлению. Если разность потенциалов равна одному вольту на 1 ем, то скорость движения (в см/сек. при 18°) выразится для нескольких ионов следующими цифрами: Катион U (см/сек.) Анион V (см/сек.) Na* К" Ag\ NH, 33,0 . ю-" 3.5 .10-" 4.6 .10-" 6,75. 10-* 5.7 .10-" 6,7 .10"" ОН" СГ Вг" Г no; Мпо; 18,2 .ю-" 6,85.10-" 7,0 .1Q-" 6,95. }
gastroguru © 2017