Уравнение силы притяжения. Сила тяжести: формула, определение. Закон всемирного тяготения и сэр Исаак Ньютон

ОПРЕДЕЛЕНИЕ

Закон всемирного тяготения открыл И. Ньютоном:

Два тела притягиваются друг к другу с , прямо пропорциональной произведению их и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает . Вид движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. , через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ПРИМЕР 1 (задача о «взвешивании» Земли)

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с . Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Ответ Масса Земли кг.

ПРИМЕР 2

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По , сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

Сэр Исаак Ньютон, получив по голове яблоком, вывел закон всемирного тяготения, который гласит:

Любые два тела притягиваются друг к другу с силой прямо пропорциональной произведению масс тела и обратно пропорциональной квадрату расстояния между ними:

F = (Gm 1 m 2)/R 2 , где

m1, m2 - массы тел
R - расстояние между центрами тел
G = 6,67·10 -11 Нм 2 /кг - константа

Определим ускорение свободного падения на поверхности Земли:

F g = m тела g = (Gm тела m Земли)/R 2

R (радиус Земли) = 6,38·10 6 м
m Земли = 5,97·10 24 кг

m тела g = (Gm тела m Земли)/R 2 или g = (Gm Земли)/R 2

Обратите внимание, что ускорение свободного падения не зависит от массы тела!

g = 6,67·10 -11 ·5,97·10 24 /(6,38·10 6) = 398,2/40,7 = 9,8 м/с 2

Мы говорили ранее, что силу тяжести (гравитационное притяжение) называют весом .

На поверхности Земли вес и масса тела имеют одинаковое значение. Но по мере удаления от Земли вес тела будет уменьшаться (т.к. будет увеличиваться расстояние между центром Земли и телом), а масса будет оставаться постоянной (поскольку масса - это выражение инерции тела). Масса измеряется в килограммах , вес - в ньютонах .

Благодаря силе гравитации, небесные тела вращаются друг относительно друга: Луна вокруг Земли; Земля вокруг Солнца; Солнце вокруг центра нашей Галактики и т.д. При этом тела удерживаются центробежной силой, которую обеспечивает сила гравитации.

Это же относится и к искусственным телам (спутникам), вращающимся вокруг Земли. Окружность по которой спутник вращается, называется орбитой вращения.

При этом на спутник действует центробежная сила:

F ц = (m спутника V 2)/R

Сила гравитации:

F g = (Gm спутника m Земли)/R 2

F ц = F g = (m спутника V 2)/R = (Gm спутника m Земли)/R 2

V2 = (Gm Земли)/R; V = √(Gm Земли)/R

По этой формуле можно вычислить скорость любого тела, вращающегося по орбите с радиусом R вокруг Земли.

Естественным спутником Земли является Луна. Определим ее линейную скорость на орбите:

Масса Земли = 5,97·10 24 кг

R - это расстояние между центром Земли и центром Луны. Чтобы определить это расстояние, нам надо сложить три величины: радиус Земли; радиус Луны; расстояние от Земли до Луны.

R луны = 1738 км = 1,74·10 6 м
R земли = 6371 км = 6,37·10 6 м
R зл = 384400 км = 384,4·10 6 м

Общее расстояние между центрами планет: R = 392,5·10 6 м

Линейная скорость Луны:

V = √(Gm Земли)/R = √6,67·10 -11 ·5,98·10 24 /392,5·10 6 = 1000 м/с = 3600 км/ч

Луна движется по круговой орбите вокруг Земли с линейной скоростью в 3600 км/ч !

Определим теперь период обращения Луны вокруг Земли. За период обращения Луна преодолевает расстояние, равное длине орбиты - 2πR . Орбитальная скорость Луны: V = 2πR/T ; с другой стороны: V = √(Gm Земли)/R :

2πR/T = √(Gm Земли)/R отсюда T = 2π√R 3 /Gm Земли

T = 6,28·√(60,7·10 24)/6,67·10 -11 ·5,98·10 24 = 3,9·10 5 с

Период обращения Луны вокруг Земли составляет 2 449 200 секунд, или 40 820 минут, или 680 часов, или 28,3 суток.

1. Вертикальное вращение

Ранее в цирках был очень популярным трюк в котором велосипедист (мотоциклист) делал полный оборот внутри окружности, расположенной вертикально.

Какой же минимальной скоростью должен обладать трюкач, чтобы в верхней точке не свалиться вниз?

Для прохождения верхней точки без падения тело должно обладать скоростью, создающей такую центробежную силу, которая бы компенсировала силу тяжести.

Центробежная сила: F ц = mV 2 /R

Сила тяжести: F g = mg

F ц = F g ; mV 2 /R = mg; V = √Rg

И опять обратите внимание, что в расчетах отсутствует масса тела! Следует учесть, что это скорость, которой должно обладать тело в верхней точке!

Допустим, что на арене цирка установлена окружность с радиусом 10 метров. Рассчитаем безопасную скорость для трюка:

V = √Rg = √10·9,8 = 10 м/с = 36 км/ч

Закон всемирного тяготения открыл Ньютон в 1687 году при изучении движения спутника Луны вокруг Земли. Английский физик четко сформулировал постулат, характеризующий силы притяжения. Кроме того, анализируя законы Кеплера, Ньютон вычислил, что силы притяжения должны существовать не только на нашей планете, но и в космосе.

История вопроса

Закон всемирного тяготения родился не спонтанно. Издревле люди изучали небосвод, главным образом для составления сельскохозяйственных календарей, вычисления важных дат, религиозных праздников. Наблюдения указывали, что в центре «мира» находится Светило (Солнце), вокруг которого по орбитам вращаются небесные тела. Впоследствии догматы церкви не позволяли так считать, и люди утратили накапливавшиеся тысячелетиями знания.

В 16 веке, до изобретения телескопов, появилась плеяда астрономов, взглянувших на небосвод по-научному, отбросив запреты церкви. Т. Браге, многие годы наблюдая за космосом, с особой тщательностью систематизировал перемещения планет. Эти высокоточные данные помогли И. Кеплеру впоследствии открыть три своих закона.

К моменту открытия (1667 г.) Исааком Ньютоном закона тяготения в астрономии окончательно утвердилась гелиоцентрическая система мира Н. Коперника. Согласно ей, каждая из планет системы вращается вокруг Светила по орбитам, которые с приближением, достаточным для многих расчетов, можно считать круговыми. В начале XVII в. И. Кеплер, анализируя работы Т. Браге, установил кинематические законы, характеризующие движения планет. Открытие стало фундаментом для выяснения динамики движения планет, то есть сил, которые определяют именно такой вид их движения.

Описание взаимодействия

В отличие от короткопериодных слабых и сильных взаимодействий, гравитация и электромагнитные поля имеют свойства дальнего действия: их влияние проявляется на гигантских расстояниях. На механические явления в макромире воздействуют 2 силы: электромагнитная и гравитационная. Воздействие планет на спутники, полет брошенного или запущенного предмета, плавание тела в жидкости - в каждом из этих явлений действуют гравитационные силы. Эти объекты притягиваются планетой, тяготеют к ней, отсюда и название «закон всемирного тяготения».

Доказано, что между физическими телами безусловно действует сила взаимного притяжения. Такие явления, как падение объектов на Землю, вращение Луны, планет вокруг Солнца, происходящие под действием сил всемирного притяжения, называют гравитационными.

Закон всемирного тяготения: формула

Всемирное тяготение формулируется следующим образом: два любых материальных объекта друг к другу притягиваются с определенной силой. Величина этой силы прямо пропорциональна произведению масс этих объектов и обратно пропорциональна квадрату расстояния между ними:

В формуле m1 и m2 являются массами исследуемых материальных объектов; r - расстояние, определяемое между центрами масс расчетных объектов; G - постоянная гравитационная величина, выражающая силу, с которой осуществляется взаимное притяжение двух объектов массой по 1 кг каждый, располагающихся между собой на расстоянии 1 м.

От чего зависит сила притяжения

Закон всемирного тяготения по-разному действует, в зависимости от региона. Так как сила притяжения зависит от значений широты на определенной местности, то аналогично ускорение свободного падения обладает разными значениями в разных местах. Максимальное значение сила тяжести и, соответственно, ускорение свободного падения имеют на полюсах Земли - сила тяжести в этих точках равна силе притяжения. Минимальными значения будут на экваторе.

Земной шар слегка сплюснут, его полярный радиус меньше экваториального примерно на 21,5 км. Однако эта зависимость менее существенная по сравнению с суточным вращением Земли. Расчеты показывают, что из-за сплюснутости Земли на экваторе величина ускорения свободного падения чуть меньше его значения на полюсе на 0,18%, а через суточное вращение - на 0,34%.

Впрочем, в одном и том же месте Земли угол между векторами направления мал, поэтому расхождение между силой притяжения и силой тяжести незначительно, и ею в расчетах можно пренебречь. То есть можно считать, что модули этих сил одинаковы - ускорение свободного падения около поверхности Земли везде одинаковое и равно приблизительно 9,8 м/с².

Вывод

Исаак Ньютон был ученым, который совершил научную революцию, полностью перестроил принципы динамики и на их основе создал научную картину мира. Его открытие повлияло на развитие науки, на создание материальной и духовной культуры. На судьбу Ньютона выпала задача пересмотреть результаты представления о мире. В XVII в. ученым завершена грандиозная работа построения фундамента новой науки - физики.

В курсе физики 7 класса вы изучали явление всемирного тяготения. Оно заключается в том, что между всеми телами во Вселенной действуют силы притяжения.

К выводу о существовании сил всемирного тяготения (их называют также гравитационными) пришёл Ньютон в результате изучения движения Луны вокруг Земли и планет вокруг Солнца.

Заслуга Ньютона заключается не только в его гениальной догадке о взаимном притяжении тел, но и в том, что он сумел найти закон их взаимодействия, т. е. формулу для расчёта гравитационной силы между двумя телами.

Закон всемирного тяготения гласит:

  • два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними

где F - модуль вектора силы гравитационного притяжения между телами массами m 1 и m 2 , г - расстояние между телами (их центрами); G - коэффициент, который называется гравитационной постоянной .

Если m 1 = m 2 = 1 кг и г = 1 м, то, как видно из формулы, гравитационная постоянная G численно равна силе F. Другими словами, гравитационная постоянная численно равна силе F притяжения двух тел массой по 1 кг, находящихся на расстоянии 1 м друг от друга. Измерения показывают, что

G = 6,67 10 -11 Нм 2 /кг 2 .

Формула даёт точный результат при расчёте силы всемирного тяготения в трёх случаях: 1) если размеры тел пренебрежимо малы по сравнению с расстоянием между ними (рис. 32, а); 2) если оба тела однородны и имеют шарообразную форму (рис. 32, б); 3) если одно из взаимодействующих тел - шар, размеры и масса которого значительно больше, чем у второго тела (любой формы), находящегося на поверхности этого шара или вблизи неё (рис. 32, в).

Рис. 32. Условия, определяющие границы применимости закона всемирного тяготения

Третий из рассмотренных случаев является основанием для того, чтобы рассчитывать по приведённой формуле силу притяжения к Земле любого из находящихся на ней тел. При этом в качестве расстояния между телами следует брать радиус Земли, поскольку размеры всех тел, находящихся на ее поверхности или вблизи неё, пренебрежимо малы по сравнению с земным радиусом.

По третьему закону Ньютона яблоко, висящее на ветке или падающее с неё с ускорением свободного падения, притягивает к себе Землю с такой же по модулю силой, с какой его притягивает Земля. Но ускорение Земли, вызванное силой её притяжения к яблоку, близко к нулю, поскольку масса Земли несоизмеримо больше массы яблока.

Вопросы

  1. Что было названо всемирным тяготением?
  2. Как иначе называются силы всемирного тяготения?
  3. Кто и в каком веке открыл закон всемирного тяготения?
  4. Сформулируйте закон всемирного тяготения. Запишите формулу, выражающую этот закон.
  5. В каких случаях следует применять закон всемирного тяготения для расчёта гравитационных сил?
  6. Притягивается ли Земля к висящему на ветке яблоку?

Упражнение 15

  1. Приведите примеры проявления силы тяготения.
  2. Космическая станция летит от Земли к Луне. Как меняется при этом модуль вектора силы её притяжения к Земле; к Луне? С одинаковыми или различными по модулю силами притягивается станция к Земле и Луне, когда она находится посередине между ними? Если силы различны, то какая больше и во сколько раз? Все ответы обоснуйте. (Известно, что масса Земли примерно в 81 раз больше массы Луны.)
  3. Известно, что масса Солнца в 330 000 раз больше массы Земли. Верно ли, что Солнце притягивает Землю в 330 000 раз сильней, чем Земля притягивает Солнце? Ответ поясните.
  4. Мяч, подброшенный мальчиком, в течение некоторого времени двигался вверх. При этом его скорость всё время уменьшалась, пока не стала равной нулю. Затем мяч стал падать вниз с возрастающей скоростью. Объясните: а) действовала ли на мяч сила притяжения к Земле во время его движения вверх; вниз; б) что послужило причиной уменьшения скорости мяча при его движении вверх; увеличения его скорости при движении вниз; в) почему при движении мяча вверх его скорость уменьшалась, а при движении вниз - увеличивалась.
  5. Притягивается ли к Луне человек, стоящий на Земле? Если да, то к чему он притягивается сильнее - к Луне или к Земле? Притягивается ли Луна к этому человеку? Ответы обоснуйте.

Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики. В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.

Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.

Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну). Ньютон же был первым, кто объединил эти два типа гравитации в своей голове, первым кто понял, что гравитация есть только одна и ее действие можно описать универсальным физическим законом.

Определение закона всемирного тяготения

Согласно этому закону, все материальные тела притягивают друг друга, при этом сила притяжения не зависит от физических или химических свойств тел. Зависит она, если все максимально упростить, лишь от веса тел и расстояния между ними. Также дополнительно нужно принять во внимание тот факт, что на все тела находящиеся на Земле действует сила притяжения самой нашей планеты, получившая название – гравитация (с латыни слово «gravitas» переводиться как тяжесть).

Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

Формула закона всемирного тяготения

Ниже представляем вашему вниманию формулу закона всемирного тяготения.

G в этой формуле это гравитационная постоянная, равная 6,67408(31) 10 −11 эта величина воздействия на любой материальный объект силы гравитации нашей планеты.

Закон всемирного тяготения и невесомость тел

Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.

Закон всемирного тяготения, видео

И в завершение поучительное видео об открытии закона всемирного тяготения.

gastroguru © 2017