Иррациональные неравенства 10. Иррациональные неравенства. Теория и примеры. Сбор и использование персональной информации

приложение №3

Урок общего разбора темы с использованием опорных схем

«Иррациональные неравенства»

Перед началом урока учащиеся рассаживаются в соответствии с тремя уровнями подготовки на определённые ряды. Отметим, что навыки по рассматриваемой теме не относятся к обязательным требованиям к подготовке учащихся, поэтому, у меня её изучают только более подготовленные учащиеся (1 и 2 группа).

Цель урока. Разобрать способы решения иррациональных неравенств среднего и повышенного уровня сложности, разработать опорные схемы.

1 этап урока - организационный (1мин.)

Учитель сообщает учащимся тему урока, цель и поясняет назначение раздаточного материала, который находится на партах.

2 этап урока (5мин.)

Устная работа на повторение по решению простейших задач по теме «Степень с рациональным показателем»

Учитель предлагает учащимся по очереди отвечать на вопросы, комментируя свой ответ с ссылкой на соответствующий теоретический факт.

Повторение рекомендуется проводить на каждом уроке в 10-11-х классах. Учащимся раздаются листы с заданиями для устной работы, составленные на основе краевых диагностических контрольных работ следующего содержания.

Степень с рациональным показателем

Упростить: 1) 12m 4 /3m 8

2) 6с 3/7 + 4 (с 1/7 ) 3

3) (32х 2 ) 1/5 · х 3/5

4) 2 4,6а · 2 -1,6а

5) 2х 0,2 · х -1,2

6) 4х 3/5 · х 1/10

7) (25х 4 ) 0,5

8) 2х 4/5 · 3х 1/5

9) (3х 2/5 ) 2 + 2х 4/5

10) 3х 1/2 · х 3/2

Вычислить: 11) 4 3,2m · 4 -1,2m , при m =1/4

12) 6 -5,6а · 6 3,6а , при а = 1/2

13) 5 · 27 2/3 - 16 1/4

14) 3 4,4с · 3 -6,4с , при с =1/2

15) 3х 2/5 · х 3/5 , при х = 2

3 этап урока - изучение новой темы (20мин.), лекция

Учитель предлагает 3 группе учащихся приступить к работе над повторением с карточками - консультантами по теме «Простейшие тригонометрические уравнения» (т.к. изучаемый материал повышенного уровня сложности и к обязательному не относится). Учащиеся 3 группы - это, как правила учащиеся со слабой математической подготовкой, педагогически запущенные школьники. После выполнения задания происходит обмен карточками внутри группы. Более подготовленные учащиеся приступают к разбору новой темы.

Перед разбором способов решений иррациональных неравенств учащимся необходимо напомнить основные теоретические факты, на основе которых будут строится опорные схемы для равносильных переходов. В зависимости от уровня подготовки учащихся это могут быть либо устные ответы на вопросы учителя, либо совместная работа учителя и учащихся, но в любом случае на уроке должно прозвучать следующее.

Определение 1. Неравенства, имеющие одно и то же множество решений, называют равносильными.

При решении неравенств обычно данное неравенство преобразуется в ему равносильное.

Например, неравенство (х - 3)/(х 2 + 1) равносильны, т.к. имеют одно и то же множество решений: х . Неравенства 2х/(х - 1) > 1 и 2х > х - 1 не равносильны, т.к. решениями первого являются решения х 1, а решениями второго - числа х > -1.

Определение 2. Область определения неравенства - это множество таких значений х, при которых имеют смысл обе части неравенства.

Мотивация. Неравенства сами по себе представляют интерес для изучения, т.к. именно с их помощью на символическом языке записываются важнейшие задачи познания реальной действительности. Часто неравенство служит важным вспомогательным средством, позволяющим доказать или опровергнуть существование каких-либо объектов, оценить их количество провести классификацию. Поэтому, с неравенствами приходится сталкиваться не менее часто, чем с уравнениями.

Определение. Неравенство, содержащие переменную под знаком корня, называется иррациональным.

Пример 1. √(5 - х)

Какова область определения неравенства?

При каком условии при возведении в квадрат обеих частей получится равносильное неравенство?

5 - х ≥ 0

√(5 - х) 5 - х -11

Пример 2. √10 + х - х 2 ≥ 2 10 + х - х 2 ≥ 0 10 + х - х 2 ≥ 4

10 + х - х 2 ≥ 4

т.к. каждое решение второго неравенства системы является решением первого неравенства.

Пример 3. Решить неравенства

А) √3х - 4

Б) √2х 2 + 5х - 3 ≤ 0 2х 2 + 5х - 3 = 0

Разберём три типичных примера, из которых будет видно, как при решении неравенств делать равносильные переходы, когда напрашивающееся преобразование равносильным не является.

Пример 1. √1 - 4х

Хотелось бы, конечно, возвести обе части в квадрат, чтобы получить квадратное неравенство. При этом мы можем получить не равносильное неравенство. Если рассматривать только те х для которых обе части не отрицательны (левая неотрицательно заведомо), то возведение в квадрат будет всё таки возможным. Но что же делать с теми х, для которых правая часть отрицательна? А ничего не делать, поскольку ни одно их этих х решением неравенства не будет: ведь для всякого решения неравенства правая часть больше левой, являющейся неотрицательным числом, и, стало быть, сама не отрицательна. Итак, следствием нашего неравенства будет такая система

1 - 4х 2

Х + 11 ≥ 0.

Тем не менее, эта система не обязана быть равносильной исходному неравенству. Областью определения полученной системы является вся числовая прямая, в то время как исходное неравенство определено лишь для тех х, для которых 1 - 4х ≥ 0. Значит если мы хотим, чтобы наша система была равносильна неравенству надо приписать это условие:

1 - 4х 2

Х + 11 ≥ 0

1 - 4х ≥ 0

Ответ: (- 6; ¼]

Предлагается сильному ученику провести рассуждение в общем виде, получится вот, что

√f(х) f(х) 2

G(х) ≥ 0

F(х) ≥ 0.

Если бы в исходном неравенстве стоял знак ≤ вместо 2 .

Пример 2. √х > х - 2

Здесь опять можно возвести в квадрат для тех х, для которых выполнено условие х - 2 ≥ 0. Однако теперь уже нельзя отбросить те х, для которых правая часть отрицательна: ведь в этом случае правая часть будет меньше заведомо не отрицательной левой, так что все такие х будут решениями неравенств. Впрочем, не все, а те которые входят в область определения неравенства, т.е. для которых х ≥ 0. Какие случаи следует рассмотреть?

1 случай: если х - 2 ≥ 0, то из нашего неравенства следует система

х > (х - 2) 2

Х - 2 ≥ 0

2 случай: если х - 2

х ≥ 0

Х - 2

При разборе случаев возникает составное условие под названием «совокупность». Получим равносильную неравенству совокупность двух систем

х > (х - 2) 2

Х - 2 ≥ 0

Х ≥ 0

Х - 2

Сильному учащемуся предлагается провести рассуждение в общем, виде, то получится вот, что:

√f(х) > g(х) f(х) > (g(х)) 2

G(х) ≥ 0

F(х) ≥ 0

G(х)

Если бы в исходном неравенстве стоял знак ≥ вместо >, то в качестве первого неравенства этой системы надо было взять f(х) ≥ (g(х)) 2 .

Пример 3. √х 2 - 1 > √х + 5.

Вопросы:

Какие значения принимают выражения стоящие в левой и правой части?

Можно ли возвести в квадрат?

Какова область определения неравенств?

Получим х 2 - 1 > х + 5

Х + 5 ≥ 0

Х 2 - 1 ≥ 0

Какое условие лишнее?

Таким образом, получим, что данное неравенство равносильно системе

Х 2 - 1 > х + 5

Х + 5 ≥ 0

Сильному учащемуся предлагается провести рассуждение в общем виде, то получится вот, что:

√f(х) > √g(х) f(х) > g(х)

G(х) ≥ 0.

Подумайте, что изменится, если вместо > в исходном неравенстве будет стоять знак ≥, ≤ или <.>

На доске вывешиваются 3 схемы решения иррациональных неравенства, ещё раз обсуждается принцип их построения.

4 этап - закрепление знаний (5мин.)

Учащимся 2 группы предлагается указать, какой системе или их совокупности равносильно неравенство № 167 (Алгебра и начала анализа 10-11 кл. М, Просвещение, 2005, Ш.А.Алимов)

Двум наиболее подготовленным учащимся из этой группы предлагается решить на доске неравенства: № 1. √х 2 - 1 >1

№ 2. √25 - х 2

Учащиеся 1 группы получают аналогичное задание, но более высокого уровня сложности № 170 (Алгебра и начала анализа 10-11 кл. М, Просвещение, 2005, Ш.А.Алимов)

одному наиболее подготовленному учащемуся из этой группы предлагается решить на доске неравенство: √4х - х 2

При этом всем учащимся разрешается пользоваться конспектом.

В это время учитель работает с учащимися 3 группы: отвечает на их вопросы при необходимости помогает; и контролирует решение задач на доске.

По истечению времени каждой группе выдаётся для проверки лист ответов (можно показать ответы на экране, используя мультимедийную систему).

5 этап урока - обсуждение решений задач, представленных на доске (7мин.)

Учащиеся, выполнявшие задачи у доски, комментируют свои решения, а остальные вносят при необходимости коррективы и выполняют записи в тетрадях.

6 этап урока - подведение итогов урока, комментарии по домашнему заданию (2мин.)

3 группа обмен карточками внутри группы.

2 группа № 168 (3, 4)

1 группа № 169 (5), № 170 (6)

Класс: 10

Цели урока.

Обучающий аспект.

1. Закрепить знания и умения решения неравенств.

2. Научиться решать иррациональные неравенства по составленному на уроке алгоритму.

Развивающий аспект.

1. Развивать грамотную математическую речь при ответе с места и у доски.

2. Развивать мышление посредством:

Анализа и синтеза при работе над выводом алгоритма

Постановки и решения проблемы (логические умозаключения при возникновении проблемной ситуации и ее разрешении)

3. Развивать умение проводить аналогии при решении иррациональных неравенств.

Воспитывающий аспект.

1. Воспитывать соблюдение норм поведения в коллективе, уважение к мнению окружающих при совместной деятельности в группах.

Тип урока. Урок изучения новых знаний.

Этапы урока.

  1. Подготовка к активной учебно-познавательной деятельности.
  2. Усвоение нового материала.
  3. Первичная проверка понимания.
  4. Домашнее задание.
  5. Подведение итогов урока.

Учащиеся знают и умеют: умеют решать иррациональные уравнения, рациональные неравенства.

Учащиеся не знают: способ решения иррациональных неравенств.

Этапы урока, образовательные задачи Содержание учебного материала
Подготовка к активной учебно-познавательной деятельности.

Обеспечение мотивации познавательной деятельности учащихся. Актуализация опорных знаний и умений. Создание условий для самостоятельной формулировки учащимися темы и целей урока.

Выполните устно:

1. Найди ошибку: у(х)=

3. Решите неравенство у(х) , используя рисунок.

4. Решите уравнение:

Повторение.

Решите уравнение:(один учащийся у доски дает ответ с полным комментарием решения, все остальные решают в тетради)

Решите устно неравенство

Чем будем заниматься на уроке, дети должны сформулировать сами.

Решение иррациональных неравенств.

Неравенство под №5 решить устно сложно.

Сегодня на уроке мы научимся решать иррациональные неравенства вида , создав при этом алгоритм их решения.

Тема урока записывается в тетрадь “Решение иррациональных неравенств”.

Усвоение нового материала.

Организация деятельности учащихся по выводу алгоритма решения уравнений, приводимых к квадратным, путем введения вспомогательной переменной.

Восприятие, осмысление, первичное запоминание изучаемого материала.

Учащиеся делятся на две группы.

Одна выводит алгоритм решения неравенства вида , а другая вида

Представитель каждой группы обоснует свой вывод, остальные слушают, делают комментарии

Используя выведенный алгоритм решения, учащимся предлагается решить следующие неравенства самостоятельно, разделившись на пары, с последующей проверкой.

Решить неравенства:

Первичная проверка понимания.

Установление правильности и осознанности усвоения алгоритма

Далее у доски с полным комментарием решают уравнения:
Подведение итогов урока Что нового узнали на урока? Повторить выведенные алгоритмы решений иррациональных неравенств

В данном уроке мы рассмотрим решение иррациональных неравенств, приведем различные примеры.

Тема: Уравнения и неравенства. Системы уравнений и неравенств

Урок: Иррациональные неравенства

При решении иррациональных неравенств довольно часто необходимо возводить обе части неравенства в некоторую степень, это довольно ответственная операция. Напомним особенности.

Обе части неравенства можно возвести в квадрат, если обе они неотрицательны, только тогда мы получаем из верного неравенства верное неравенство.

Обе части неравенства можно возвести куб в любом случае, если исходное неравенство было верным, то при возведении в куб мы получим верное неравенство.

Рассмотрим неравенство вида:

Подкоренное выражение должно быть неотрицательным. Функция может принимать любые значения, необходимо рассмотреть два случая.

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) больше отрицательного выражения, значит, неравенство выполняется всегда.

Итак, имеем следующую схему решения:

В первой системе мы не защищаем отдельно подкоренное выражение, т. к. при выполнении второго неравенства системы подкоренное выражение автоматически должно быть положительно.

Пример 1 - решить неравенство:

Согласно схеме, переходим к эквивалентной совокупности двух систем неравенств:

Проиллюстрируем:

Рис. 1 - иллюстрация решения примера 1

Как мы видим, при избавлении от иррациональности, например, при возведении в квадрат, получаем совокупность систем. Иногда эту сложную конструкцию можно упростить. В полученной совокупности мы имеем право упростить первую систему и получить эквивалентную совокупность:

В качестве самостоятельного упражнения необходимо доказать эквивалентность данных совокупностей.

Рассмотрим неравенство вида:

Аналогично предыдущему неравенству, рассматриваем два случая:

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) меньше отрицательного выражения, значит, неравенство противоречиво. Вторую систему рассматривать не нужно.

Имеем эквивалентную систему:

Иногда иррациональное неравенство можно решить графическим методом. Данный способ применим, когда соответствующие графики можно достаточно легко построить и найти их точки пересечения.

Пример 2 - решить неравенства графически:

а)

б)

Первое неравенство мы уже решали и знаем ответ.

Чтобы решить неравенства графически, нужно построить график функции, стоящей в левой части, и график функции, стоящей в правой части.

Рис. 2. Графики функций и

Для построения графика функции необходимо преобразовать параболу в параболу (зеркально отобразить относительно оси у), полученную кривую сместить на 7 единиц вправо. График подтверждает, что данная функция монотонно убывает на своей области определения.

График функции - это прямая, ее легко построить. Точка пересечения с осью у - (0;-1).

Первая функция монотонно убывает, вторая монотонно возрастает. Если уравнение имеет корень, то он единственный, по графику легко его угадать: .

Когда значение аргумента меньше корня, парабола находится выше прямой. Когда значение аргумента находится в пределах от трех до семи, прямая проходит выше параболы.

Имеем ответ:

Эффективным методом решения иррациональных неравенств является метод интервалов.

Пример 3 - решить неравенства методом интервалов:

а)

б)

согласно методу интервалов, необходимо временно отойти от неравенства. Для этого перенести в заданном неравенстве все в левую часть (получить справа ноль) и ввести функцию, равную левой части:

теперь необходимо изучить полученную функцию.

ОДЗ:

Данное уравнение мы уже решали графически, поэтому не останавливаемся на определении корня.

Теперь необходимо выделить интервалы знакопостоянства и определить знак функции на каждом интервале:

Рис. 3. Интервалы знакопостоянства к примеру 3

Напомним, что для определения знаков на интервале необходимо взять пробную точку и подставить ее в функцию, полученный знак функция будет сохранять на всем интервале.

Проверим значение в граничной точке:

Очевиден ответ:

Рассмотрим следующий тип неравенств:

Сначала запишем ОДЗ:

Корни существуют, они неотрицательны, обе части можем возвести в квадрат. Получаем:

Получили эквивалентную систему:

Полученную систему можно упростить. При выполнении второго и третьего неравенств первое истинно автоматически. Имеем::

Пример 4 - решить неравенство:

Действуем по схеме - получаем эквивалентную систему.

Всякое неравенство, в состав которого входит функция, стоящая под корнем, называется иррациональным . Существует два типа таких неравенств:

В первом случае корень меньше функции g (x ), во втором - больше. Если g (x ) - константа , неравенство резко упрощается. Обратите внимание: внешне эти неравенства очень похожи, но схемы решения у них принципиально различаются.

Сегодня научимся решать иррациональные неравенства первого типа - они самые простые и понятные. Знак неравенства может быть строгим или нестрогим. Для них верно следующее утверждение:

Теорема. Всякое иррациональное неравенство вида

Равносильно системе неравенств:

Неслабо? Давайте рассмотрим, откуда берется такая система:

  1. f (x ) ≤ g 2 (x ) - тут все понятно. Это исходное неравенство, возведенное в квадрат;
  2. f (x ) ≥ 0 - это ОДЗ корня. Напомню: арифметический квадратный корень существует только из неотрицательного числа;
  3. g (x ) ≥ 0 - это область значений корня. Возводя неравенство в квадрат, мы сжигаем минусы. В результате могут возникнуть лишние корни. Неравенство g (x ) ≥ 0 отсекает их.

Многие ученики «зацикливаются» на первом неравенстве системы: f (x ) ≤ g 2 (x ) - и напрочь забывают два других. Результат предсказуем: неправильное решение, потерянные баллы.

Поскольку иррациональные неравенства - достаточно сложная тема, разберем сразу 4 примера. От элементарных до действительно сложных. Все задачи взяты из вступительных экзаменов МГУ им. М. В. Ломоносова.

Примеры решения задач

Задача. Решите неравенство:

Перед нами классическое иррациональное неравенство : f (x ) = 2x + 3; g (x ) = 2 - константа. Имеем:

Из трех неравенств к концу решения осталось только два. Потому что неравенство 2 ≥ 0 выполняется всегда. Пересечем оставшиеся неравенства:

Итак, x ∈ [−1,5; 0,5]. Все точки закрашены, поскольку неравенства нестрогие .

Задача. Решите неравенство:

Применяем теорему:

Решаем первое неравенство. Для этого раскроем квадрат разности. Имеем:

2x 2 − 18x + 16 < (x − 4) 2 ;
2x 2 − 18x + 16 < x 2 − 8x + 16:
x 2 − 10x < 0;
x (x − 10) < 0;
x ∈ (0; 10).

Теперь решим второе неравенство. Там тоже квадратный трехчлен :

2x 2 − 18x + 16 ≥ 0;
x 2 − 9x + 8 ≥ 0;
(x − 8)(x − 1) ≥ 0;
x ∈ (−∞; 1]∪∪∪∪}

gastroguru © 2017